DOI QR코드

DOI QR Code

가지 달린 구조의 폴리실라잔을 전구체로 이용해 제조한 카본 나노튜브/실리콘 카보나이트라이드 복합체 시트의 발열특성에 관한 연구

A Study on Heating Element Properties of Carbon Nanotube/Silicon Carbonitride Composite Sheet using Branched Structured Polysilazane as Precursor

  • Huh, Tae-Hwan (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Song, Hyeon Jun (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Jeong, Yeong Jin (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kwark, Young-Je (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 투고 : 2020.11.10
  • 심사 : 2020.12.20
  • 발행 : 2020.12.31

초록

본 연구에서는 카본나노튜브(CNT) 면상발열체에 preceramic polymer 중 하나인 실세스퀴아잔을 코팅하여 고온에서 안정적인 발열이 가능한 CNT/SiCN 복합체 시트를 제조하였다. 제조된 복합체 필름은 FE-SEM을 통해 실세스퀴아잔이 CNT 면상발열체의 표면을 모두 코팅한 것을 확인하였다. 또한 800℃의 열처리를 통해 실세 스퀴아잔이 SiCN 세라믹으로 전환되어도 표면의 결함이 발견되지 않고 온전한 구조를 유지하는 것을 확인하였다. CNT/SiCN 복합체 시트는 질소와 공기 분위기 모두에서 기존의 CNT 시트보다도 높은 열적 안정성을 확보할 수 있었다. 마지막으로 제조된 CNT/SiCN 복합체 필름은 대기 중에서 700℃ 이상의 온도로 발열이 가능하였고 발열 후 온도를 식히고 재발열 또한 성공적으로 이루어졌다.

In this paper, we manufactured silsesquiaznae (SSQZ)-coated carbon nanotube (CNT) surface heating elements, which allowed stable heating at high temperatures. The prepared composite sheet was confirmed by FE-SEM that the SSQZ fully coated the surface of CNT sheet. Furthermore, it was also confirmed that the silicon carbonitride (SiCN) ceramic formed by heat treatment of 800℃ have no defects found and maintain intact structure. The CNT/SiCN composite sheet was able to achieve higher thermal stability than raw CNT sheets in both nitrogen and air atmosphere. Finally, the CNT/SiCN composite sheet was possible to heat up at a temperature of over 700℃ in the atmosphere, and the re-heating was successfully operated after cooling.

키워드

참고문헌

  1. Yang, J.Y., Yoon, D.H., Kim, B.S., and Seo, M.K., "Preparation and Characterization of Pitch-based Carbon Paper for Low Energy and High Efficiency Surface Heating Elements", Composites Research, Vol. 31, No. 6, 2018, pp. 412-420.
  2. Yang, J.Y., Ko, J.K., Kim, B.S., and Seo, M.K., "Application and Standardization Trend of Carbon Fiber during the Fourth Industrial Revolution", Fiber Technology and Industry, Vol. 21, No. 4, 2017, pp. 263-272.
  3. Zhao, J. Jian, Q., Zhang, N., Luo, L., Huang, B., and Cao, S., "The Improvement on Drying Performance and Energy Efficiency of a Tumbler Clothes Dryer with a Novel Electric Heating Element", Applied Thermal Engineering, Vol. 128, 2018, pp. 531-538. https://doi.org/10.1016/j.applthermaleng.2017.09.045
  4. Bae, K.Y., Lee, K.S., Kong, T.W., Chung, H.S., Jeong, H.Y., and Chung, H.T., "A Study on Application of Warm Air Circulator by Using the Carbon Heating Element with Particle Type", Journal of the Korean Society for Power System Engineering, Vol. 7, No. 4, 2003, pp. 31-37.
  5. Park, J.Y., and Lee, J.D., "Electrical Properties of Carbon Black Composites for Flexible Fiber Heating Element", Journal of the Korean Oil Chemists Society, Vol. 32, No. 3, 2015, pp. 405-411. https://doi.org/10.12925/jkocs.2015.32.3.405
  6. Choi, K.E., Park, C.H., and Seo, M.K., "Electrical and Resistance Heating Properties of Carbon Fiber Heating Element for Car Seat", Applied Chemistry for Engineering, Vol. 27, No. 2, 2016, pp. 210-216. https://doi.org/10.14478/ace.2016.1018
  7. Chugh, R., and Chung, D.D.L., "Flexible Graphite as a Heating Element", Carbon, Vol. 40, No. 13, 2002, pp. 2285-2289. https://doi.org/10.1016/S0008-6223(02)00141-0
  8. Hong, S., and Myung, S., "Nanotube Electronics: A Flexible Approach to Mobility", Nature Nanotechnology, Vol. 2, No. 4, 2007, pp. 207-208. https://doi.org/10.1038/nnano.2007.89
  9. Sundaram, R.M., Koziol, K.K., and Windle, A.H., "Continuous Direct Spinning of Fibers of Single-Walled Carbon Nanotubes with Metallic Chirality", Advanced Materials, Vol. 23, No. 43, 2011, pp. 5064-5068. https://doi.org/10.1002/adma.201102754
  10. Pop, E., Mann, D., Wang, Q., Goodson, K., and Dai, H., "Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature", Nano Letters, Vol. 6, No. 1, 2006, pp. 96-100. https://doi.org/10.1021/nl052145f
  11. Janas, D., and Koziol, K.K., "Rapid Electrothermal Response of High-Temperature Carbon Nanotube Film Heaters", Carbon, Vol. 59, 2013, pp. 457-463. https://doi.org/10.1016/j.carbon.2013.03.039
  12. Neitzert, H.C., Vertuccio, L., and Sorrentino, A., "Epoxy/MWCNT Composite as Temperature Sensor and Electrical Heating Element", IEEE Transactions on Nanotechnology, Vol. 10, No. 4, 2011, pp. 688-693. https://doi.org/10.1109/TNANO.2010.2068307
  13. Lee, Y., Le, V.T., Kim, J.G., Kang, H., Kim, E.S., Ahn, S.E., and Suh D., "Versatile, High-Power, Flexible, Stretchable Carbon Nanotube Sheet Heating Elements Tolerant to Mechanical Damage and Severe Deformation", Advanced Functional Materials, Vol. 28, No. 8, 2018, pp. 1706007. https://doi.org/10.1002/adfm.201706007
  14. Li, Y., Yang, M., Xu, B., Sun, Q., Zhang, W., Zhang, Y., and Meng, F., "Synthesis, Structure and Antioxidant Performance of Boron Nitride (Hexagonal) Layers Coating on Carbon Nanotubes (Multi-Walled)", Applied Surface Science, Vol. 450, No. 30, 2018, pp. 284-291. https://doi.org/10.1016/j.apsusc.2018.04.205
  15. He, J., Chen, J., Shi, L., Li, Q., Lu, W., Qu, S., Qiu, W., and Zhou, G., "Fabrication of Thermally Robust Carbon Nanotube (CNT)/SiO2 Composite Films and Their High-Temperature Mechanical Properties", Carbon, Vol. 147, 2019, pp. 236-241. https://doi.org/10.1016/j.carbon.2019.02.088
  16. Colombo, P., Riedel, R., Soraru, and Kleebe, H.K., Polymer Derived Ceramics: From Nanostructure to Applications, DEStech Pub. Inc., Lancaster, UK, 2010.
  17. Popper, P., Special Ceramics, Academic Press, New York, USA, 1960.
  18. Ionescu, E., Kleebe, H.J., and Riedel, R., "Silicon-Containing Polymer-Derived Ceramic Nanocomposites (PDC-NCs): Preparative Approaches and Properties", Chemical Society Reviews, Vol. 41, No. 15, 2012, pp. 5032-5052. https://doi.org/10.1039/c2cs15319j
  19. Kokott, S., Heymann, L., and Motz, G., "Rheology and Processability of Multi-Walled Carbon Nanotubes-ABSE Polycarbosilazane Composites", Journal of the European Ceramic Society, Vol. 28, No. 5, 2008, pp. 1015-1021. https://doi.org/10.1016/j.jeurceramsoc.2007.09.035
  20. Jones, R., Szweda, A., and Petrak, D., "Polymer Derived Ceramic Matrix Composites", Composites Part A, Vol. 30, No. 4, 1999, pp. 569-575. https://doi.org/10.1016/S1359-835X(98)00151-1
  21. Huh, T.H., Lee, S.Y., Park, S.K., Chang, J.H., Lee, Y.S., and Kwark, Y.J., "Homogeneous Polyimide/Silica Nanohybrid Films Adapting Simple Polymer Blending Process: Polymeric Silsesquiazane Precursor to Inorganic Silica", Macromolecular Research, Vol. 26, No. 2, 2018, pp. 187-193. https://doi.org/10.1007/s13233-018-6024-1
  22. Huh, T.H., and Kwark, Y.J., "Fabrication of Hierarchically Micro/Meso/Macroporous Silicon Carbonitride Ceramic Using Freeze Casting Method with a Silsesquiazane Precursor", Ceramics International, Vol. 46, No. 8, 2020, pp. 11218-11224. https://doi.org/10.1016/j.ceramint.2020.01.144
  23. Yoo, K.H., Kim, I.W., Cho, J.H., and Kwark, Y.J., "Silsesquiazane/Organic Polymer Blends as Organic-Inorganic Hybrid Materials", Fibers and Polymers, Vol. 13, no. 9, 2012, pp. 1113-1119. https://doi.org/10.1007/s12221-012-1113-9
  24. Colombo, P., Mera, G., Riedel, R., and Soraru, G.D., "Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics", Journal of the American Ceramic Society, Vol. 93, No. 7, 2010, pp. 1805-1837.
  25. Yang, L.W., Zhang, X.S., Liu, H.T., and Zu, M., "Thermal Resistant, Mechanical and Electrical Properties of a Novel Ultrahigh-Content Randomly-Oriented CNTs Reinforced SiC Matrix Composite-Sheet", Composites Part B, Vol. 119, No. 15, 2017, pp. 10-17. https://doi.org/10.1016/j.compositesb.2017.03.039
  26. Song, H., Jeon, S.Y., and Jeong, Y., "Fabrication of a Coaxial High Performance Fiber Lithium-Ion Battery Supported by a Cotton Yarn Electrolyte Reservoir", Carbon, Vol. 147, 2019, pp. 441-450. https://doi.org/10.1016/j.carbon.2019.02.081