References
- Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. 2006;174:801-809. https://doi.org/10.1503/cmaj.051351
- Loureiro A, Veloso S. Green exercise, health and well-being. In: Fleury-Bahi G, Pol E, Navarro O, editors. Handbook of environmental psychology and quality of life research. Cham (Switzerland): Springer; 2017. p. 149-169.
- Penedo FJ, Dahn JR. Exercise and well-being: a review of mental and physical health benefits associated with physical activity. Curr Opin Psychiatry. 2005;18:189-193. https://doi.org/10.1097/00001504-200503000-00013
- Jagim AR, Harty PS, Camic CL. Common ingredient profiles of multi-ingredient pre-workout supplements. Nutrients. 2019;11:254. https://doi.org/10.3390/nu11020254
- Park JG, Son YJ, Lee TH, et al. Anticancer efficacy of Cordyceps militaris ethanol extract in a xenografted leukemia model. Evid Based Complement Alternat Med. 2017;2017:8474703.
- Shin S, Kwon J, Lee S, et al. Immunostimulatory effects of Cordyceps militaris on macrophages through the enhanced production of cytokines via the activation of NF-kappaB. Immune Netw. 2010;10:55-63. https://doi.org/10.4110/in.2010.10.2.55
- Li XT, Li HC, Li CB, et al. Protective effects on mitochondria and anti-aging activity of polysaccharides from cultivated fruiting bodies of Cordyceps militaris. Am J Chin Med. 2010;38:1093-1106. https://doi.org/10.1142/S0192415X10008494
- Dong CH, Yang T, Lian T. A comparative study of the antimicrobial, antioxidant, and cytotoxic activities of methanol extracts from fruit bodies and fermented mycelia of caterpillar medicinal mushroom Cordyceps militaris (Ascomycetes). Int J Med Mushrooms. 2014;16:485-495. https://doi.org/10.1615/IntJMedMushrooms.v16.i5.70
- Song J, Wang Y, Teng M, et al. Studies on the antifatigue activities of Cordyceps militaris fruit body extract in mouse model. Evid Based Complement Alternat Med. 2015;2015:174616.
- Wan JJ, Qin Z, Wang PY, et al. Muscle fatigue: general understanding and treatment. Exp Mol Med. 2017;49:e384. https://doi.org/10.1038/emm.2017.194
- Huang WC, Chiu WC, Chuang HL, et al. Effect of curcumin supplementation on physiological fatigue and physical performance in mice. Nutrients. 2015;7:905-921. https://doi.org/10.3390/nu7020905
- Kim H, Park S, Han DS, et al. Octacosanol supplementation increases running endurance time and improves biochemical parameters after exhaustion in trained rats. J Med Food. 2003;6:345-351. https://doi.org/10.1089/109662003772519903
- Dalla Corte CL, de Carvalho NR, Amaral GP, et al. Antioxidant effect of organic purple grape juice on exhaustive exercise. Appl Physiol Nutr Metab. 2013;38:558-565. https://doi.org/10.1139/apnm-2012-0230
- Ping FW, Keong CC, Bandyopadhyay A. Effects of acute supplementation of Panax ginseng on endurance running in a hot & humid environment. Indian J Med Res. 2011;133:96-102.
- Shin EJ, Jo S, Choi S, et al. Red ginseng improves exercise endurance by promoting mitochondrial biogenesis and myoblast differentiation. Molecules. 2020;25:865. https://doi.org/10.3390/molecules25040865
- Takeshita H, Yamamoto K, Nozato S, et al. Modified forelimb grip strength test detects agingassociated physiological decline in skeletal muscle function in male mice. Sci Rep. 2017;7:42323. https://doi.org/10.1038/srep42323
- Vollestad NK, Sejersted OM. Biochemical correlates of fatigue. A brief review. Eur J Appl Physiol Occup Physiol. 1988;57:336-347. https://doi.org/10.1007/BF00635993
- Tung YT, Hsu YJ, Liao CC, et al. Physiological and biochemical effects of intrinsically high and low exercise capacities through multiomics approaches. Front Physiol. 2019;10:1201. https://doi.org/10.3389/fphys.2019.01201
- Layzer RB. Muscle metabolism during fatigue and work. Baillieres Clin Endocrinol Metab. 1990;4:441-459. https://doi.org/10.1016/S0950-351X(05)80064-3
- Ke R, Xu Q, Li C, et al. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int. 2018;42:384-392. https://doi.org/10.1002/cbin.10915
- Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93:993-1017. https://doi.org/10.1152/physrev.00038.2012
- Morales-Alamo D, Guerra B, Santana A, et al. Skeletal muscle pyruvate dehydrogenase phosphorylation and lactate accumulation during sprint exercise in normoxia and severe acute hypoxia: effects of antioxidants. Front Physiol. 2018;9:188. https://doi.org/10.3389/fphys.2018.00188
- Guimaraes-Ferreira L. Role of the phosphocreatine system on energetic homeostasis in skeletal and cardiac muscles. Einstein (Sao Paulo). 2014;12:126-131. https://doi.org/10.1590/S1679-45082014RB2741
- Thomas AW, Davies NA, Moir H, et al. Exerciseassociated generation of PPARgamma ligands activates PPARgamma signaling events and upregulates genes related to lipid metabolism. J Appl Physiol. 2012;112:806-815. https://doi.org/10.1152/japplphysiol.00864.2011
Cited by
- Cordyceps militaris: An Overview of Its Chemical Constituents in Relation to Biological Activity vol.10, pp.11, 2020, https://doi.org/10.3390/foods10112634