DOI QR코드

DOI QR Code

Lysophosphatidylcholine Enhances Bactericidal Activity by Promoting Phagosome Maturation via the Activation of the NF-κB Pathway during Salmonella Infection in Mouse Macrophages

  • Lee, Hyo-Ji (Department of Biological Sciences and Institute of Life Sciences, Kangwon National University) ;
  • Hong, Wan-Gi (BIT Medical Convergence Graduate Program, Kangwon National University) ;
  • Woo, Yunseo (Department of Biological Sciences and Institute of Life Sciences, Kangwon National University) ;
  • Ahn, Jae-Hee (Department of Pharmacy, Kangwon National University) ;
  • Ko, Hyun-Jeong (Department of Pharmacy, Kangwon National University) ;
  • Kim, Hyeran (Department of Biological Sciences and Institute of Life Sciences, Kangwon National University) ;
  • Moon, Sungjin (Department of Biological Sciences and Institute of Life Sciences, Kangwon National University) ;
  • Hahn, Tae-Wook (Department of Veterinary Medicine, Kangwon National University) ;
  • Jung, Young Mee (Department of Chemistry, Kangwon National University) ;
  • Song, Dong-Keun (Department of Pharmacology, College of Medicine, Hallym University) ;
  • Jung, Yu-Jin (Department of Biological Sciences and Institute of Life Sciences, Kangwon National University)
  • 투고 : 2020.01.23
  • 심사 : 2020.11.03
  • 발행 : 2020.12.31

초록

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes salmonellosis and mortality worldwide. S. Typhimurium infects macrophages and survives within phagosomes by avoiding the phagosome-lysosome fusion system. Phagosomes sequentially acquire different Rab GTPases during maturation and eventually fuse with acidic lysosomes. Lysophosphatidylcholine (LPC) is a bioactive lipid that is associated with the generation of chemoattractants and reactive oxygen species (ROS). In our previous study, LPC controlled the intracellular growth of Mycobacterium tuberculosis by promoting phagosome maturation. In this study, to verify whether LPC enhances phagosome maturation and regulates the intracellular growth of S. Typhimurium, macrophages were infected with S. Typhimurium. LPC decreased the intracellular bacterial burden, but it did not induce cytotoxicity in S. Typhimurium-infected cells. In addition, combined administration of LPC and antibiotic significantly reduced the bacterial burden in the spleen and the liver. The ratios of the colocalization of intracellular S. Typhimurium with phagosome maturation markers, such as early endosome antigen 1 (EEA1) and lysosome-associated membrane protein 1 (LAMP-1), were significantly increased in LPC-treated cells. The expression level of cleaved cathepsin D was rapidly increased in LPC-treated cells during S. Typhimurium infection. Treatment with LPC enhanced ROS production, but it did not affect nitric oxide production in S. Typhimurium-infected cells. LPC also rapidly triggered the phosphorylation of IκBα during S. Typhimurium infection. These results suggest that LPC can improve phagosome maturation via ROS-induced activation of NF-κB pathway and thus may be developed as a therapeutic agent to control S. Typhimurium growth.

키워드

과제정보

This research was supported by grants from the Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education, Science and Technology (2017R1A6A3A11032251, 2018R1D1A1B07049097, and 2020R1I1A1A01066916), and a Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (2020R1A6C101A195). Funding was also provided by a 2017 Research Grant from Kangwon National University (No. 520170491).

참고문헌

  1. Bae, Y.S., Oh, H., Rhee, S.G., and Yoo, Y.D. (2011). Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 32, 491-509. https://doi.org/10.1007/s10059-011-0276-3
  2. Bakowski, M.A., Braun, V., and Brumell, J.H. (2008). Salmonella-containing vacuoles: directing traffic and nesting to grow. Traffic 9, 2022-2031. https://doi.org/10.1111/j.1600-0854.2008.00827.x
  3. Behnsen, J., Perez-Lopez, A., Nuccio, S.P., and Raffatellu, M. (2015). Exploiting host immunity: the Salmonella paradigm. Trends Immunol. 36, 112-120. https://doi.org/10.1016/j.it.2014.12.003
  4. Benes, P., Vetvicka, V., and Fusek, M. (2008). Cathepsin D--many functions of one aspartic protease. Crit. Rev. Oncol. Hematol. 68, 12-28. https://doi.org/10.1016/j.critrevonc.2008.02.008
  5. Bernal-Bayard, J. and Ramos-Morales, F. (2018). Molecular mechanisms used by Salmonella to evade the immune system. Curr. Issues Mol. Biol. 25, 133-167. https://doi.org/10.21775/cimb.025.133
  6. Blander, J.M. and Medzhitov, R. (2004). Regulation of phagosome maturation by signals from toll-like receptors. Science 304, 1014-1018. https://doi.org/10.1126/science.1096158
  7. Bohdanowicz, M. and Grinstein, S. (2010). Vesicular traffic: a Rab SANDwich. Curr. Biol. 20, R311-R314.
  8. Broz, P., Ohlson, M.B., and Monack, D.M. (2012). Innate immune response to Salmonella typhimurium, a model enteric pathogen. Gut Microbes 3, 62-70. https://doi.org/10.4161/gmic.19141
  9. Brumell, J.H., Tang, P., Zaharik, M.L., and Finlay, B.B. (2002). Disruption of the Salmonella-containing vacuole leads to increased replication of Salmonella enterica serovar typhimurium in the cytosol of epithelial cells. Infect. Immun. 70, 3264-3270. https://doi.org/10.1128/iai.70.6.3264-3270.2002
  10. Buchmeier, N.A. and Heffron, F. (1991). Inhibition of macrophage phagosome-lysosome fusion by Salmonella typhimurium. Infect. Immun. 59, 2232-2238. https://doi.org/10.1128/IAI.59.7.2232-2238.1991
  11. Cho, D.H., Kim, J.K., and Jo, E.K. (2020). Mitophagy and innate immunity in infection. Mol. Cells 43, 10-22. https://doi.org/10.14348/molcells.2020.2329
  12. Desjardins, M. (1995). Biogenesis of phagolysosomes: the 'kiss and run' hypothesis. Trends Cell Biol. 5, 183-186.
  13. Dougan, G., John, V., Palmer, S., and Mastroeni, P. (2011). Immunity to salmonellosis. Immunol. Rev. 240, 196-210. https://doi.org/10.1111/j.1600-065X.2010.00999.x
  14. Flannagan, R.S., Jaumouille, V., and Grinstein, S. (2012). The cell biology of phagocytosis. Annu. Rev. Pathol. 7, 61-98. https://doi.org/10.1146/annurev-pathol-011811-132445
  15. Garcia-del Portillo, F., Nunez-Hernandez, C., Eisman, B., and Ramos-Vivas, J. (2008). Growth control in the Salmonella-containing vacuole. Curr. Opin. Microbiol. 11, 46-52. https://doi.org/10.1016/j.mib.2008.01.001
  16. Haraga, A., Ohlson, M.B., and Miller, S.I. (2008). Salmonellae interplay with host cells. Nat. Rev. Microbiol. 6, 53-66. https://doi.org/10.1038/nrmicro1788
  17. Harrison, R.E., Bucci, C., Vieira, O.V., Schroer, T.A., and Grinstein, S. (2003). Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. Mol. Cell. Biol. 23, 6494-6506. https://doi.org/10.1128/MCB.23.18.6494-6506.2003
  18. Hong, C.W., Kim, T.K., Ham, H.Y., Nam, J.S., Kim, Y.H., Zheng, H., Pang, B., Min, T.K., Jung, J.S., Lee, S.N., et al. (2010). Lysophosphatidylcholine increases neutrophil bactericidal activity by enhancement of azurophil granule-phagosome fusion via glycine.GlyR alpha 2/TRPM2/p38 MAPK signaling. J. Immunol. 184, 4401-4413. https://doi.org/10.4049/jimmunol.0902814
  19. Hong, C.W. and Song, D.K. (2008). Immunomodulatory actions of lysophosphatidylcholine. Biomol. Ther. 16, 69-76. https://doi.org/10.4062/biomolther.2008.16.2.069
  20. Hossain, M.A., Park, H.C., Lee, K.J., Park, S.W., Park, S.C., and Kang, J. (2020). In vitro synergistic potentials of novel antibacterial combination therapies against Salmonella enterica serovar Typhimurium. BMC Microbiol. 20, 118. https://doi.org/10.1186/s12866-020-01810-x
  21. Hutagalung, A.H. and Novick, P.J. (2011). Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 91, 119-149. https://doi.org/10.1152/physrev.00059.2009
  22. Huynh, K.K., Eskelinen, E.L., Scott, C.C., Malevanets, A., Saftig, P., and Grinstein, S. (2007). LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J. 26, 313-324. https://doi.org/10.1038/sj.emboj.7601511
  23. Jeon, J.W., Park, B.C., Jung, J.G., Jang, Y.S., Shin, E.C., and Park, Y.W. (2013). The soluble form of the cellular prion protein enhances phagocytic activity and cytokine production by human monocytes via activation of ERK and NF-kappaB. Immune Netw. 13, 148-156. https://doi.org/10.4110/in.2013.13.4.148
  24. Johnson, R., Mylona, E., and Frankel, G. (2018). Typhoidal Salmonella: distinctive virulence factors and pathogenesis. Cell. Microbiol. 20, e12939. https://doi.org/10.1111/cmi.12939
  25. Kabarowski, J.H. (2009). G2A and LPC: regulatory functions in immunity. Prostaglandins Other Lipid Mediat. 89, 73-81. https://doi.org/10.1016/j.prostaglandins.2009.04.007
  26. Kamaruzzaman, N.F., Kendall, S., and Good, L. (2017). Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br. J. Pharmacol. 174, 2225-2236. https://doi.org/10.1111/bph.13664
  27. Lee, H.J., Kim, K.C., Han, J.A., Choi, S.S., and Jung, Y.J. (2015). The early induction of suppressor of cytokine signaling 1 and the downregulation of toll-like receptors 7 and 9 induce tolerance in costimulated macrophages. Mol. Cells 38, 26-32. https://doi.org/10.14348/molcells.2015.2136
  28. Lee, H.J., Ko, H.J., and Jung, Y.J. (2016a). Insufficient generation of mycobactericidal mediators and inadequate level of phagosomal maturation are related with susceptibility to virulent Mycobacterium tuberculosis infection in mouse macrophages. Front. Microbiol. 7, 541. https://doi.org/10.3389/fmicb.2016.00541
  29. Lee, H.J., Ko, H.J., Kim, S.H., and Jung, Y.J. (2019). Pasakbumin A controls the growth of Mycobacterium tuberculosis by enhancing the autophagy and production of antibacterial mediators in mouse macrophages. PLoS One 14, e0199799. https://doi.org/10.1371/journal.pone.0199799
  30. Lee, H.J., Ko, H.J., Song, D.K., and Jung, Y.J. (2018). Lysophosphatidylcholine promotes phagosome maturation and regulates inflammatory mediator production through the protein kinase A-phosphatidylinositol 3 kinase-p38 mitogen-activated protein kinase signaling pathway during Mycobacterium tuberculosis infection in mouse macrophages. Front. Immunol. 9, 920. https://doi.org/10.3389/fimmu.2018.00920
  31. Lee, H.J., Woo, Y., Hahn, T.W., Jung, Y.M., and Jung, Y.J. (2020). Formation and maturation of the phagosome: a key mechanism in innate immunity against intracellular bacterial infection. Microorganisms 8, 1298. https://doi.org/10.3390/microorganisms8091298
  32. Lee, S., Wi, S.M., Min, Y., and Lee, K.Y. (2016b). Peroxiredoxin-3 is involved in bactericidal activity through the regulation of mitochondrial reactive oxygen species. Immune Netw. 16, 373-380. https://doi.org/10.4110/in.2016.16.6.373
  33. Levin, R., Grinstein, S., and Canton, J. (2016). The life cycle of phagosomes: formation, maturation, and resolution. Immunol. Rev. 273, 156-179. https://doi.org/10.1111/imr.12439
  34. Meresse, S., Steele-Mortimer, O., Finlay, B.B., and Gorvel, J.P. (1999). The rab7 GTPase controls the maturation of Salmonella typhimuriumcontaining vacuoles in HeLa cells. EMBO J. 18, 4394-4403. https://doi.org/10.1093/emboj/18.16.4394
  35. Miyazaki, H., Midorikawa, N., Fujimoto, S., Miyoshi, N., Yoshida, H., and Matsumoto, T. (2017). Antimicrobial effects of lysophosphatidylcholine on methicillin-resistant Staphylococcus aureus. Ther. Adv. Infect. Dis. 4, 89-94. https://doi.org/10.1177/2049936117714920
  36. Monack, D.M. (2013). Helicobacter and Salmonella persistent infection strategies. Cold Spring Harb. Perspect. Med. 3, a010348. https://doi.org/10.1101/cshperspect.a010348
  37. Orsi, R.D., Sforcin, J.M., Funari, S.R.C., Fernandes, A., and Bankova, V. (2006). Synergistic effect of propolis and antibiotics on the Salmonella typhi. Braz. J. Microbiol. 37, 108-112.
  38. Park, C.H., Kim, M.R., Han, J.M., Jeong, T.S., and Sok, D.E. (2009). Lysophosphatidylcholine exhibits selective cytotoxicity, accompanied by ROS formation, in RAW 264.7 macrophages. Lipids 44, 425-435. https://doi.org/10.1007/s11745-009-3286-6
  39. Pauwels, A.M., Trost, M., Beyaert, R., and Hoffmann, E. (2017). Patterns, receptors, and signals: regulation of phagosome maturation. Trends Immunol. 38, 407-422. https://doi.org/10.1016/j.it.2017.03.006
  40. Pires, D., Marques, J., Pombo, J.P., Carmo, N., Bettencourt, P., Neyrolles, O., Lugo-Villarino, G., and Anes, E. (2016). Role of cathepsins in Mycobacterium tuberculosis survival in human macrophages. Sci. Rep. 6, 32247. https://doi.org/10.1038/srep32247
  41. Prashar, A., Schnettger, L., Bernard, E.M., and Gutierrez, M.G. (2017). Rab GTPases in immunity and inflammation. Front. Cell. Infect. Microbiol. 7, 435. https://doi.org/10.3389/fcimb.2017.00435
  42. Rhen, M. (2019). Salmonella and reactive oxygen species: a love-hate relationship. J. Innate Immun. 11, 216-226. https://doi.org/10.1159/000496370
  43. Rink, J., Ghigo, E., Kalaidzidis, Y., and Zerial, M. (2005). Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735-749. https://doi.org/10.1016/j.cell.2005.06.043
  44. Shivcharan, S., Yadav, J., and Qadri, A. (2018). Host lipid sensing promotes invasion of cells with pathogenic Salmonella. Sci. Rep. 8, 15501. https://doi.org/10.1038/s41598-018-33319-9
  45. Simonsen, A., Gaullier, J.M., D'Arrigo, A., and Stenmark, H. (1999). The Rab5 effector EEA1 interacts directly with syntaxin-6. J. Biol. Chem. 274, 28857-28860. https://doi.org/10.1074/jbc.274.41.28857
  46. Smith, A.C., Do Heo, W., Braun, V., Jiang, X.J., Macrae, C., Casanova, J.E., Scidmore, M.A., Grinstein, S., Meyer, T., and Brumell, J.H. (2007). A network of Rab GTPases controls phagosome maturation and is modulated by Salmonella enterica serovar Typhimurium. J. Cell Biol. 176, 263-268. https://doi.org/10.1083/jcb.200611056
  47. Steele-Mortimer, O. (2008). The Salmonella-containing vacuole: moving with the times. Curr. Opin. Microbiol. 11, 38-45. https://doi.org/10.1016/j.mib.2008.01.002
  48. Uribe-Querol, E. and Rosales, C. (2017). Control of phagocytosis by microbial pathogens. Front. Immunol. 8, 1368. https://doi.org/10.3389/fimmu.2017.01368
  49. van Asten, A.J., Koninkx, J.F., and van Dijk, J.E. (2005). Salmonella entry: M cells versus absorptive enterocytes. Vet. Microbiol. 108, 149-152. https://doi.org/10.1016/j.vetmic.2005.04.001
  50. Vieira, O.V., Bucci, C., Harrison, R.E., Trimble, W.S., Lanzetti, L., Gruenberg, J., Schreiber, A.D., Stahl, P.D., and Grinstein, S. (2003). Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol. Cell. Biol. 23, 2501-2514. https://doi.org/10.1128/MCB.23.7.2501-2514.2003
  51. Wemyss, M.A. and Pearson, J.S. (2019). Host cell death responses to nontyphoidal Salmonella infection. Front. Immunol. 10, 1758. https://doi.org/10.3389/fimmu.2019.01758
  52. Wick, M.J. (2011). Innate immune control of Salmonella enterica serovar Typhimurium: mechanisms contributing to combating systemic Salmonella infection. J. Innate Immun. 3, 543-549. https://doi.org/10.1159/000330771
  53. Wong, C.E., Sad, S., and Coombes, B.K. (2009). Salmonella enterica serovar typhimurium exploits Toll-like receptor signaling during the hostpathogen interaction. Infect. Immun. 77, 4750-4760. https://doi.org/10.1128/IAI.00545-09
  54. Woo, Y., Kim, H., Kim, K.C., Han, J.A., and Jung, Y.J. (2018). Tumor-secreted factors induce IL-1beta maturation via the glucose-mediated synergistic axis of mTOR and NF-kappaB pathways in mouse macrophages. PLoS One 13, e0209653. https://doi.org/10.1371/journal.pone.0209653
  55. Yan, J.J., Jung, J.S., Lee, J.E., Lee, J., Huh, S.O., Kim, H.S., Jung, K.C., Cho, J.Y., Nam, J.S., Suh, H.W., et al. (2004). Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat. Med. 10, 161-167. https://doi.org/10.1038/nm989
  56. Yang, C.S., Yuk, J.M., and Jo, E.K. (2009). The role of nitric oxide in mycobacterial infections. Immune Netw. 9, 46-52. https://doi.org/10.4110/in.2009.9.2.46

피인용 문헌

  1. Cold Atmospheric Plasma Promotes Killing of Staphylococcus aureus by Macrophages vol.6, pp.3, 2020, https://doi.org/10.1128/msphere.00217-21
  2. Stimulation of Toll-Like Receptor 3 Diminishes Intracellular Growth of Salmonella Typhimurium by Enhancing Autophagy in Murine Macrophages vol.11, pp.9, 2020, https://doi.org/10.3390/metabo11090602