DOI QR코드

DOI QR Code

Differentiation of Human Mesenchymal Stem Cells towards Neuronal Lineage: Clinical Trials in Nervous System Disorders

  • Hernandez, Rosa (Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada) ;
  • Jimenez-Luna, Cristina (Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada) ;
  • Perales-Adan, Jesus (Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada) ;
  • Perazzoli, Gloria (Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada) ;
  • Melguizo, Consolacion (Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada) ;
  • Prados, Jose (Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada)
  • Received : 2019.04.17
  • Accepted : 2019.08.12
  • Published : 2019.12.30

Abstract

Mesenchymal stem cells (MSCs) have been proposed as an alternative therapy to be applied into several pathologies of the nervous system. These cells can be obtained from adipose tissue, umbilical cord blood and bone marrow, among other tissues, and have remarkable therapeutic properties. MSCs can be isolated with high yield, which adds to their ability to differentiate into non-mesodermal cell types including neuronal lineage both in vivo and in vitro. They are able to restore damaged neural tissue, thus being suitable for the treatment of neural injuries, and possess immunosuppressive activity, which may be useful for the treatment of neurological disorders of inflammatory etiology. Although the long-term safety of MSC-based therapies remains unclear, a large amount of both pre-clinical and clinical trials have shown functional improvements in animal models of nervous system diseases following transplantation of MSCs. In fact, there are several ongoing clinical trials evaluating the possible benefits this cell-based therapy could provide to patients with neurological damage, as well as their clinical limitations. In this review we focus on the potential of MSCs as a therapeutic tool to treat neurological disorders, summarizing the state of the art of this topic and the most recent clinical studies.

Keywords

References

  1. Achanta, P., Sedora Roman, N. I. and Quinones-Hinojosa, A. (2010) Gliomagenesis and the use of neural stem cells in brain tumor treatment. Anticancer Agents Med. Chem. 10, 121-130. https://doi.org/10.2174/187152010790909290
  2. Ahmadi, N., Razavi, S., Kazemi, M. and Oryan, S. (2012) Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue Cell 44, 87-94. https://doi.org/10.1016/j.tice.2011.11.006
  3. Alexanian, A. R. (2015) Epigenetic modulators promote mesenchymal stem cell phenotype switches. Int. J. Biochem. Cell Biol. 64, 190-194. https://doi.org/10.1016/j.biocel.2015.04.010
  4. Alexanian, A. R., Liu, Q. S. and Zhang, Z. (2013) Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes, SMAD signaling and cyclic adenosine monophosphate levels. Int. J. Biochem. Cell Biol. 45, 1633-1638. https://doi.org/10.1016/j.biocel.2013.04.022
  5. Arboleda, D., Forostyak, S., Jendelova, P., Marekova, D., Amemori, T., Pivonkova, H., Masinova, K. and Sykova, E. (2011) Transplantation of predifferentiated adipose-derived stromal cells for the treatment of spinal cord injury. Cell. Mol. Neurobiol. 31, 1113-1122. https://doi.org/10.1007/s10571-011-9712-3
  6. Ardeshiry Lajimi, A., Hagh, M. F., Saki, N., Mortaz, E., Soleimani, M. and Rahim, F. (2013) Feasibility of cell therapy in multiple sclerosis: A systematic review of 83 studies. Int. J. Hematol. Oncol. Stem Cell Res. 7, 15-33.
  7. Asokan, A., Ball, A. R., Laird, C. D., Hermer, L. and Ormerod, B. K. (2014) Desvenlafaxine may accelerate neuronal maturation in the dentate gyri of adult male rats. PLoS ONE 9, e98530. https://doi.org/10.1371/journal.pone.0098530
  8. Bali, P., Lahiri, D. K., Banik, A., Nehru, B. and Anand, A. (2017) Potential for stem cells therapy in Alzheimer's disease: Do neurotrophic factors play critical role? Curr. Alzheimer Res. 14, 208-220. https://doi.org/10.2174/1567205013666160314145347
  9. Bhang, S. H., Lee, Y. E., Cho, S. W., Shim, J. W., Lee, S. H., Choi, C. Y., Chang, J. W. and Kim, B. S. (2007) Basic fibroblast growth factor promotes bone marrow stromal cell transplantation-mediated neural regeneration in traumatic brain injury. Biochem. Biophys. Res. Commun. 359, 40-45. https://doi.org/10.1016/j.bbrc.2007.05.046
  10. Boku, S., Nakagawa, S. and Koyama, T. (2010) Glucocorticoids and lithium in adult hippocampal neurogenesis. Vitam. Horm. 82, 421-431. https://doi.org/10.1016/S0083-6729(10)82021-7
  11. Borkowska, P., Kowalska, J., Fila-Danilow, A., Bielecka, A. M., Paul-Samojedny, M., Kowalczyk, M. and Kowalski, J. (2015) Affect of antidepressants on the in vitro differentiation of rat bone marrow mesenchymal stem cells into neuronal cells. Eur. J. Pharm. Sci. 73, 81-87. https://doi.org/10.1016/j.ejps.2015.03.016
  12. Budoni, M., Fierabracci, A., Luciano, R., Petrini, S., Di Ciommo, V. and Muraca, M. (2013) The immunosuppressive effect of mesenchymal stromal cells on B lymphocytes is mediated by membrane vesicles. Cell Transplant. 22, 369-379. https://doi.org/10.3727/096368911X582769b
  13. Clement, F., Grockowiak, E., Zylbersztejn, F., Fossard, G., Gobert, S. and Maguer-Satta, V. (2017) Stem cell manipulation, gene therapy and the risk of cancer stem cell emergence. Stem Cell Investig. 4, 67. https://doi.org/10.21037/sci.2017.07.03
  14. Croft, A. P. and Przyborski, S. A. (2006) Formation of neurons by nonneural adult stem cells: Potential mechanism implicates an artifact of growth in culture. Stem Cells 24, 1841-1851. https://doi.org/10.1634/stemcells.2005-0609
  15. Chen, Y. T., Sun, C. K., Lin, Y. C., Chang, L. T., Chen, Y. L., Tsai, T. H., Chung, S. Y., Chua, S., Kao, Y. H., Yen, C. H., Shao, P. L., Chang, K. C., Leu, S. and Yip, H. K. (2011) Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J. Transl. Med. 9, 51. https://doi.org/10.1186/1479-5876-9-51
  16. Choi, S. A., Lee, J. Y., Wang, K. C., Phi, J. H., Song, S. H., Song, J. and Kim, S. K. (2012) Human adipose tissue-derived mesenchymal stem cells: Characteristics and therapeutic potential as cellular vehicles for prodrug gene therapy against brainstem gliomas. Eur. J. Cancer 48, 129-137.
  17. Chun, S. Y., Soker, S., Jang, Y. J., Kwon, T. G. and Yoo, E. S. (2016) Differentiation of human dental pulp stem cells into dopaminergic neuron-like cells in vitro. J. Korean Med. Sci. 31,171-177. https://doi.org/10.3346/jkms.2016.31.2.171
  18. Dong, X., Pan, R., Zhang, H., Yang, C., Shao, J. and Xiang, L. (2013) Modification of histone acetylation facilitates hepatic differentiation of human bone marrow mesenchymal stem cells. PLoS ONE 8, e63405. https://doi.org/10.1371/journal.pone.0063405
  19. Drela, K., Siedlecka, P., Sarnowska, A. and Domanska-Janik, K. (2013) Human mesenchymal stem cells in the treatment of neurological diseases. Acta Neurobiol. Exp. (Wars.) 73, 38-56.
  20. Ferro, F., Spelat, R., Falini, G., Gallelli, A., D'Aurizio, F., Puppato, E., Pandolfi, M., Beltrami, A. P., Cesselli, D., Beltrami, C. A., Ambesi-Impiombato, F. S. and Curcio, F. (2011) Adipose tissue-derived stem cell in vitro differentiation in a three-dimensional dental bud structure. Am. J. Pathol. 178, 2299-2310. https://doi.org/10.1016/j.ajpath.2011.01.055
  21. Ferroni, L., Gardin, C., Tocco, I., Epis, R., Casadei, A., Vindigni, V., Mucci, G. and Zavan, B. (2013) Potential for neural differentiation of mesenchymal stem cells. Adv. Biochem. Eng. Biotechnol. 129, 89-115.
  22. Fila-Danilow, A., Borkowska, P., Paul-Samojedny, M., Kowalczyk, M. and Kowalski, J. (2017) The influence of TSA and VPA on the in vitro differentiation of bone marrow mesenchymal stem cells into neuronal lineage cells: Gene expression studies. Postepy Hig. Med. Dosw. (Online) 71, 236-242.
  23. Frese, L., Dijkman, P. E. and Hoerstrup, S. P. (2016) Adipose tissuederived stem cells in regenerative medicine. Transfus. Med. Hemother. 43, 268-274. https://doi.org/10.1159/000448180
  24. Friedenstein, A. J., Deriglasova, U. F., Kulagina, N. N., Panasuk, A. F., Rudakowa, S. F., Luria, E. A. and Ruadkow, I. A. (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp. Hematol. 2, 83-92.
  25. Fu, L., Zhu, L., Huang, Y., Lee, T. D., Forman, S. J. and Shih, C. C. (2008) Derivation of neural stem cells from mesenchymal stemcells: Evidence for a bipotential stem cell population. Stem Cells Dev. 17, 1109-1121. https://doi.org/10.1089/scd.2008.0068
  26. Gage, F. H. and Temple, S. (2013) Neural stem cells: Generating and regenerating the brain. Neuron 80, 588-601. https://doi.org/10.1016/j.neuron.2013.10.037
  27. Gao, S., Zhao, P., Lin, C., Sun, Y., Wang, Y., Zhou, Z., Yang, D., Wang, X., Xu, H., Zhou, F., Cao, L., Zhou, W., Ning, K., Chen, X. and Xu, J. (2014a) Differentiation of human adipose-derived stem cells into neuron-like cells which are compatible with photocurable threedimensional scaffolds. Tissue Eng. Part A 20, 1271-1284. https://doi.org/10.1089/ten.tea.2012.0773
  28. Gao, Y., Bai, C., Wang, K., Sun, B., Guan, W. and Zheng, D. (2014b) All-trans retinoic acid promotes nerve cell differentiation of yolk sac-derived mesenchymal stem cells. Appl. Biochem. Biotechnol. 174, 682-692. https://doi.org/10.1007/s12010-014-1100-2
  29. Gu, W., Zhang, F., Xue, Q., Ma, Z., Lu, P. and Yu, B. (2010) Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord. Neuropathology 30, 205-217. https://doi.org/10.1111/j.1440-1789.2009.01063.x
  30. Halder, D., Kim, G. H. and Shin, I. (2015) Synthetic small molecules that induce neuronal differentiation in neuroblastoma and fibroblast cells. Mol. Biosyst. 11, 2727-2737. https://doi.org/10.1039/C5MB00161G
  31. Han, Z. C., Du, W. J., Han, Z. B. and Liang, L. (2017) New insights into the heterogeneity and functional diversity of human mesenchymal stem cells. Biomed. Mater. Eng. 28, S29-S45.
  32. Hasan, A., Deeb, G., Rahal, R., Atwi, K., Mondello, S., Marei, H. E., Gali, A. and Sleiman, E. (2017) Mesenchymal stem cells in the treatment of traumatic brain injury. Front. Neurol. 8, 28.
  33. Hawryluk, G. W., Mothe, A., Wang, J., Wang, S., Tator, C. and Fehlings, M. G. (2012) An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev. 21, 2222-2238. https://doi.org/10.1089/scd.2011.0596
  34. Herlofsen, S. R., Bryne, J. C., Hoiby, T., Wang, L., Issner, R., Zhang, X., Coyne, M. J., Boyle, P., Gu, H., Meza-Zepeda, L. A., Collas, P., Mikkelsen, T. S. and Brinchmann, J. E. (2013) Genome-wide map of quantified epigenetic changes during in vitro chondrogenic differentiation of primary human mesenchymal stem cells. BMC Genomics 14, 105. https://doi.org/10.1186/1471-2164-14-105
  35. Honczarenko, M., Le, Y., Swierkowski, M., Ghiran, I., Glodek, A. M. and Silberstein, L. E. (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24, 1030-1041. https://doi.org/10.1634/stemcells.2005-0319
  36. Hong, S. Q., Zhang, H. T., You, J., Zhang, M. Y., Cai, Y. Q., Jiang, X. D. and Xu, R. X. (2011) Comparison of transdifferentiated and untransdifferentiated human umbilical mesenchymal stem cells in rats after traumatic brain injury. Neurochem. Res. 36, 2391-2400. https://doi.org/10.1007/s11064-011-0567-2
  37. Ilic, D. and Polak, J. M. (2011) Stem cells in regenerative medicine: Introduction. Br. Med. Bull. 98, 117-126. https://doi.org/10.1093/bmb/ldr012
  38. Jaenisch, R. and Young, R. (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567-582. https://doi.org/10.1016/j.cell.2008.01.015
  39. Jahan, S., Kumar, D., Kumar, A., Rajpurohit, C. S., Singh, S., Srivastava, A., Pandey, A. and Pant, A. B. (2017) Neurotrophic factor mediated neuronal differentiation of human cord blood mesenchymal stem cells and their applicability to assess the developmental neurotoxicity. Biochem. Biophys. Res. Commun. 482, 961-967. https://doi.org/10.1016/j.bbrc.2016.11.140
  40. Jopling, C., Boue, S. and Izpisua Belmonte, J. C. (2011) Dedifferentiation, transdifferentiation and reprogramming: Three routes to regeneration. Nat. Rev. Mol. Cell Biol. 12, 79-89. https://doi.org/10.1038/nrm3043
  41. Kajiyama, H., Hamazaki, T. S., Tokuhara, M., Masui, S., Okabayashi, K., Ohnuma, K., Yabe, S., Yasuda, K., Ishiura, S., Okochi, H. and Asashima, M. (2010) Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. Int. J. Dev. Biol. 54, 699-705. https://doi.org/10.1387/ijdb.092953hk
  42. Kalladka, D. and Muir, K. W. (2014) Brain repair: Cell therapy in stroke. Stem Cells Cloning 7, 31-44. https://doi.org/10.2147/SCCAA.S38003
  43. Kemp, K., Hares, K., Mallam, E., Heesom, K. J., Scolding, N. and Wilkins, A. (2010) Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival. J. Neurochem. 114, 1569-1580. https://doi.org/10.1111/j.1471-4159.2009.06553.x
  44. Kim, H. S., Choi, D. Y., Yun, S. J., Choi, S. M., Kang, J. W., Jung, J. W., Hwang, D., Kim, K. P. and Kim, D. W. (2012) Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J. Proteome Res. 11, 839-849. https://doi.org/10.1021/pr200682z
  45. Krabbe, C., Zimmer, J. and Meyer, M. (2005) Neural transdifferentiation of mesenchymal stem cells--a critical review. APMIS 113, 831-844. https://doi.org/10.1111/j.1600-0463.2005.apm_3061.x
  46. Laroni, A., de Rosbo, N. K. and Uccelli, A. (2015) Mesenchymal stem cells for the treatment of neurological diseases: Immunoregulation beyond neuroprotection. Immunol. Lett. 168, 183-190. https://doi.org/10.1016/j.imlet.2015.08.007
  47. Lewis, C. M. and Suzuki, M. (2014) Therapeutic applications of mesenchymal stem cells for amyotrophic lateral sclerosis. Stem Cell Res. Ther. 5, 32. https://doi.org/10.1186/scrt421
  48. Liu, Q., Cheng, G., Wang, Z., Zhan, S., Xiong, B. and Zhao, X. (2015) Bone marrow-derived mesenchymal stem cells differentiate into nerve-like cells in vitro after transfection with brain-derived neurotrophic factor gene. In Vitro Cell. Dev. Biol. Anim. 51, 319-327. https://doi.org/10.1007/s11626-015-9875-1
  49. Liu, Y., Yi, X. C., Guo, G., Long, Q. F., Wang, X. A., Zhong, J., Liu, W. P., Fei, Z., Wang, D. M. and Liu, J. (2014) Basic fibroblast growth factor increases the transplantationmediated therapeutic effect of bone mesenchymal stem cells following traumatic brain injury. Mol. Med. Rep. 9, 333-339. https://doi.org/10.3892/mmr.2013.1803
  50. Lu, D., Li, Y., Wang, L., Chen, J., Mahmood, A. and Chopp, M. (2001) Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J. Neurotrauma 18, 813-819. https://doi.org/10.1089/089771501316919175
  51. Lu, P., Blesch, A. and Tuszynski, M. H. (2004) Induction of bone marrow stromal cells to neurons: Differentiation, transdifferentiation, or artifact? J. Neurosci. Res. 77, 174-191. https://doi.org/10.1002/jnr.20148
  52. Lunn, J. S., Sakowski, S. A., Hur, J. and Feldman, E. L. (2011) Stem cell technology for neurodegenerative diseases. Ann. Neurol. 70, 353-361. https://doi.org/10.1002/ana.22487
  53. Mahla, R. S. (2016) Stem cells applications in regenerative medicine and disease therapeutics. Int. J. Cell Biol. 2016, 6940283. https://doi.org/10.1155/2016/6940283
  54. Mahmood, A., Lu, D., Lu, M. and Chopp, M. (2003) Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 53, 697-702; discussion 702-703. https://doi.org/10.1227/01.NEU.0000079333.61863.AA
  55. Mahmood, A., Lu, D., Wang, L. and Chopp, M. (2002) Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. J. Neurotrauma 19, 1609-1617. https://doi.org/10.1089/089771502762300265
  56. Maltman, D. J., Hardy, S. A. and Przyborski, S. A. (2011) Role of mesenchymal stem cells in neurogenesis and nervous system repair. Neurochem. Int. 59, 347-356. https://doi.org/10.1016/j.neuint.2011.06.008
  57. Marei, H. E. S., El-Gamal, A., Althani, A., Afifi, N., Abd-Elmaksoud, A., Farag, A., Cenciarelli, C., Thomas, C. and Anwarul H. (2018) Cholinergic and dopaminergic neuronal differentiation of human adipose tissue derived mesenchymal stem cells. J. Cell. Physiol. 233, 936-945. https://doi.org/10.1002/jcp.25937
  58. Mareschi, K., Novara, M., Rustichelli, D., Ferrero, I., Guido, D., Carbone, E., Medico, E., Madon, E., Vercelli, A. and Fagioli, F. (2006) Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types. Exp. Hematol. 34, 1563-1572. https://doi.org/10.1016/j.exphem.2006.06.020
  59. Maria Ferri, A. L., Bersano, A., Lisini, D., Boncoraglio, G., Frigerio, S. and Parati, E. (2016) Mesenchymal stem cells for ischemic stroke: Progress and possibilities. Curr. Med. Chem. 23, 1598-1608. https://doi.org/10.2174/0929867323666160222113702
  60. Morales-Garcia, J. A., Luna-Medina, R., Alonso-Gil, S., Sanz-Sancristobal, M., Palomo, V., Gil, C., Santos, A., Martinez, A. and Perez-Castillo, A. (2012) Glycogen synthase kinase 3 inhibition promotes adult hippocampal neurogenesis in vitro and in vivo. ACS Chem. Neurosci. 3, 963-971. https://doi.org/10.1021/cn300110c
  61. Mu, M. W., Zhao, Z. Y. and Li, C. G. (2015) Comparative study of neural differentiation of bone marrow mesenchymal stem cells by different induction methods. Genet. Mol. Res. 14, 14169-14176. https://doi.org/10.4238/2015.October.29.39
  62. Nadig, R. R. (2009) Stem cell therapy-Hype or hope? A review. J. Conserv. Dent. 12, 131-138. https://doi.org/10.4103/0972-0707.58329
  63. Nagai, A., Kim, W. K., Lee, H. J., Jeong, H. S., Kim, K. S., Hong, S. H., Park, I. H. and Kim, S. U. (2007) Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow. PLoS ONE 2, e1272. https://doi.org/10.1371/journal.pone.0001272
  64. Nakagawa, S. (2010) Involvement of neurogenesis in the action of psychotropic drugs. Nihon Shinkei Seishin Yakurigaku Zasshi 30, 109-113.
  65. Nasrallah, H. A., Hopkins, T. and Pixley, S. K. (2010) Differential effects of antipsychotic and antidepressant drugs on neurogenic regions in rats. Brain Res. 1354, 23-29. https://doi.org/10.1016/j.brainres.2010.07.075
  66. Qu, J. and Zhang, H. (2017) Roles of mesenchymal stem cells in spinal cord injury. Stem Cells Int. 2017, 5251313.
  67. Rafieemehr, H., Kheyrandish, M. and Soleimani, M. (2015) Neuroprotective effects of transplanted mesenchymal stromal cells-derived human umbilical cord blood neural progenitor cells in EAE. Iran. J. Allergy Asthma Immunol. 14, 596-604.
  68. Salehi, H., Amirpour, N., Niapour, A. and Razavi, S. (2016) An overview of neural differentiation potential of human adipose derived stem cells. Stem Cell Rev. 12, 26-41. https://doi.org/10.1007/s12015-015-9631-7
  69. Scuteri, A., Miloso, M., Foudah, D., Orciani, M., Cavaletti, G. and Tredici, G. (2011) Mesenchymal stem cells neuronal differentiation ability: A real perspective for nervous system repair? Curr. Stem Cell Res. Ther. 6, 82-92. https://doi.org/10.2174/157488811795495486
  70. Shahbazi, A., Safa, M., Alikarami, F., Kargozar, S., Asadi, M. H. and Joghataei, M. T. (2016) Rapid induction of neural differentiation in human umbilical cord matrix mesenchymal stem cells by cAMPelevating agents. Int. J. Mol. Cell. Med. 5, 167-177.
  71. Shi, Y., Hu, Y., Lv, C. and Tu, G. (2016) Effects of reactive oxygen species on differentiation of bone marrow mesenchymal stem cells. Ann. Transplant. 21, 695-700. https://doi.org/10.12659/AOT.900463
  72. Si, J. W., Wang, X. D. and Shen, S. G. (2015) Perinatal stem cells: A promising cell resource for tissue engineering of craniofacial bone. World J. Stem Cells 7, 149-159. https://doi.org/10.4252/wjsc.v7.i1.149
  73. Song, C. H., Honmou, O., Ohsawa, N., Nakamura, K., Hamada, H., Furuoka, H., Hasebe, R. and Horiuchi, M. (2009) Effect of transplantation of bone marrow-derived mesenchymal stem cells on mice infected with prions. J. Virol. 83, 5918-5927. https://doi.org/10.1128/JVI.00165-09
  74. Squillaro, T., Peluso, G. and Galderisi, U. (2016) Clinical trials with mesenchymal stem cells: An update. Cell Transplant. 25, 829-848. https://doi.org/10.3727/096368915X689622
  75. Sun, T. and Ma, Q. H. (2013) Repairing neural injuries using human umbilical cord blood. Mol. Neurobiol. 47, 938-945. https://doi.org/10.1007/s12035-012-8388-0
  76. Takeda, Y. S. and Xu, Q. (2015) Neuronal differentiation of human mesenchymal stem cells using exosomes derived from differentiating neuronal cells. PLoS ONE 10, e0135111. https://doi.org/10.1371/journal.pone.0135111
  77. Teixeira, F. G., Carvalho, M. M., Sousa, N. and Salgado, A. J. (2013) Mesenchymal stem cells secretome: A new paradigm for central nervous system regeneration? Cell. Mol. Life Sci. 70, 3871-3882. https://doi.org/10.1007/s00018-013-1290-8
  78. Teven, C. M., Liu, X., Hu, N., Tang, N., Kim, S. H., Huang, E., Yang, K., Li, M., Gao, J. L., Liu, H., Natale, R. B., Luther, G., Luo, Q., Wang, L., Rames, R., Bi, Y., Luo, J., Luu, H. H., Haydon, R. C., Reid, R. R. and He, T. C. (2011) Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int. 2011, 201371.
  79. Tomasoni, S., Longaretti, L., Rota, C., Morigi, M., Conti, S., Gotti, E., Capelli, C., Introna, M., Remuzzi, G. and Benigni, A. (2013) Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev. 22, 772-780. https://doi.org/10.1089/scd.2012.0266
  80. Ullah, I., Subbarao, R. B. and Rho, G. J. (2015) Human mesenchymal stem cells-current trends and future prospective. Biosci. Rep. 35, e00191. https://doi.org/10.1042/BSR20150025
  81. Wakao, S., Kuroda, Y., Ogura, F., Shigemoto, T. and Dezawa, M. (2012) Regenerative effects of mesenchymal stem cells: Contribution of muse cells, a novel pluripotent stem cell type that resides in mesenchymal cells. Cells 1, 1045-1060. https://doi.org/10.3390/cells1041045
  82. Wang, N., Xu, Y., Qin, T., Wang, F. P., Ma, L. L., Luo, X. G. and Zhang, T. C. (2013) Myocardin-related transcription factor-A is a key regulator in retinoic acid-induced neural-like differentiation of adult bone marrow-derived mesenchymal stem cells. Gene 523, 178-186. https://doi.org/10.1016/j.gene.2013.03.043
  83. Wang, S. P., Wang, Z. H., Peng, D. Y., Li, S. M., Wang, H. and Wang, X. H. (2012) Therapeutic effect of mesenchymal stem cells in rats with intracerebral hemorrhage: Reduced apoptosis and enhanced neuroprotection. Mol. Med. Rep. 6, 848-854. https://doi.org/10.3892/mmr.2012.997
  84. Woodbury, D., Schwarz, E. J., Prockop, D. J. and Black, I. B. (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61, 364-370. https://doi.org/10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
  85. Woodcock, T. and Morganti-Kossmann, M. C. (2013) The role of markers of inflammation in traumatic brain injury. Front. Neurol. 4, 18. https://doi.org/10.3389/fneur.2013.00018
  86. Wyse, R. D., Dunbar, G. L. and Rossignol, J. (2014) Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int. J. Mol. Sci. 15, 1719-1745. https://doi.org/10.3390/ijms15021719
  87. Xu, J., Lu, H., Miao, Z. N., Wu, W. J., Jiang, Y. Z., Ge, F., Fang, W. F., Zhu, A. H., Chen, G., Zhou, J. H., Lu, Y. Z., Tang, Z. F. and Wang, Y. (2016) Immunoregulatory effect of neuronal-like cells in inducting differentiation of bone marrow mesenchymal stem cells. Eur. Rev. Med. Pharmacol. Sci. 20, 5041-5048.
  88. Yan, Z. J., Zhang, P., Hu, Y. Q., Zhang, H. T., Hong, S. Q., Zhou, H. L., Zhang, M. Y. and Xu, R. X. (2013) Neural stem-like cells derived from human amnion tissue are effective in treating traumatic brain injury in rat. Neurochem. Res. 38, 1022-1033. https://doi.org/10.1007/s11064-013-1012-5
  89. Ying, C., Hu, W., Cheng, B., Zheng, X. and Li, S. (2012) Neural differentiation of rat adipose-derived stem cells in vitro. Cell. Mol. Neurobiol. 32, 1255-1263. https://doi.org/10.1007/s10571-012-9850-2
  90. Yoo, S. W., Kim, S. S., Lee, S. Y., Lee, H. S., Kim, H. S., Lee, Y. D. and Suh-Kim, H. (2008) Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp. Mol. Med. 40, 387-397. https://doi.org/10.3858/emm.2008.40.4.387
  91. Yousef, B., Sanooghi, D., Faghihi, F., Joghataei, M. T. and Latifi, N. (2017) Evaluation of motor neuron differentiation potential of human umbilical cord blood-derived mesenchymal stem cells, in vitro. J. Chem. Neuroanat. 81, 18-26. https://doi.org/10.1016/j.jchemneu.2017.01.003
  92. Zanni, G., Michno, W., Di Martino, E., Tjarnlund-Wolf, A., Pettersson, J., Mason, C. E., Hellspong, G., Blomgren, K. and Hanrieder, J. (2017) Lithium accumulates in neurogenic brain regions as revealed by high resolution ion imaging. Sci. Rep. 7, 40726. https://doi.org/10.1038/srep40726
  93. Zemel’ko, V. I., Kozhukharova, I. V., Kovaleva, Z. V., Domnina, A. P., Pugovkina, N. A., Fridlianskaia, I. I., Puzanov, M. V., Anisimov, S. V., Grinchuk, T. M. and Nikol’skii, N. N. (2014) BDNF secretion in human mesenchymal stem cells isolated from bone marrow, endometrium and adipose tissue. Tsitologiia 56, 204-211.
  94. Zemel’ko, V. I., Kozhukharova, I. B., Alekseenko, L. L., Domnina, A. P., Reshetnikova, G. F., Puzanov, M. V., Dmitrieva, R. I., Grinchuk, T. M., Nikol’skii, N. N. and Anisimov, S. V. (2013) Neurogenic potential of human mesenchymal stem cells isolated from bone marrow, adipose tissue and endometrium: a comparative study. Tsitologiia 55, 101-110.
  95. Zhang, H., Huang, Z., Xu, Y. and Zhang, S. (2006) Differentiation and neurological benefit of the mesenchymal stem cells transplanted into the rat brain following intracerebral hemorrhage. Neurol. Res. 28, 104-112. https://doi.org/10.1179/016164106X91960
  96. Zhang, Y. J., Zhang, W., Lin, C. G., Ding, Y., Huang, S. F., Wu, J. L., Li, Y., Dong, H. and Zeng, Y. S. (2012) Neurotrophin-3 gene modified mesenchymal stem cells promote remyelination and functional recovery in the demyelinated spinal cord of rats. J. Neurol. Sci. 313, 64-74. https://doi.org/10.1016/j.jns.2011.09.027
  97. Zhu, Y., Liu, T., Song, K., Ning, R., Ma, X. and Cui, Z. (2009) ADSCs differentiated into cardiomyocytes in cardiac microenvironment. Mol. Cell. Biochem. 324, 117-129. https://doi.org/10.1007/s11010-008-9990-3

Cited by

  1. Human Mesenchymal Stem Cells for Spinal Cord Injury vol.15, 2020, https://doi.org/10.2174/1574888x15666200316164051
  2. Role of Mesenchymal Stem Cells in Counteracting Oxidative Stress—Related Neurodegeneration vol.21, pp.9, 2020, https://doi.org/10.3390/ijms21093299
  3. Therapeutic Efficacy of Bone Marrow Derived Mesenchymal Stem Cells in Ototoxic Sensorineural Hearing Loss vol.63, pp.12, 2020, https://doi.org/10.3342/kjorl-hns.2020.00759
  4. An Update on the Potential of Mesenchymal Stem Cell Therapy for Cutaneous Diseases vol.2021, 2021, https://doi.org/10.1155/2021/8834590
  5. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance vol.12, 2020, https://doi.org/10.3389/fimmu.2021.656364
  6. Neuroprotection and Axonal Regeneration Induced by Bone Marrow Mesenchymal Stromal Cells Depend on the Type of Transplant vol.9, 2020, https://doi.org/10.3389/fcell.2021.772223
  7. The Chemokine Receptors Ccr5 and Cxcr6 Enhance Migration of Mesenchymal Stem Cells into the Degenerating Retina vol.29, pp.2, 2020, https://doi.org/10.1016/j.ymthe.2020.10.026
  8. Eradication of specific donor-dependent variations of mesenchymal stem cells in immunomodulation to enhance therapeutic values vol.12, pp.4, 2021, https://doi.org/10.1038/s41419-021-03644-5
  9. Peripheral Nerve-Derived Stem Cell Spheroids Induce Functional Recovery and Repair after Spinal Cord Injury in Rodents vol.22, pp.8, 2021, https://doi.org/10.3390/ijms22084141
  10. 22(R)-hydroxycholesterol for dopaminergic neuronal specification of MSCs and amelioration of Parkinsonian symptoms in rats vol.7, pp.1, 2020, https://doi.org/10.1038/s41420-020-00351-6
  11. 3D Bioprinting Mesenchymal Stem Cell-Derived Neural Tissues Using a Fibrin-Based Bioink vol.11, pp.8, 2020, https://doi.org/10.3390/biom11081250
  12. Differences and similarities between mesenchymal stem cell and endothelial progenitor cell immunoregulatory properties against T cells vol.13, pp.8, 2021, https://doi.org/10.4252/wjsc.v13.i8.971
  13. Chromatin remodeling due to degradation of citrate carrier impairs osteogenesis of aged mesenchymal stem cells vol.1, pp.9, 2020, https://doi.org/10.1038/s43587-021-00105-8
  14. Intranasal delivery of mesenchymal stem cells‐derived extracellular vesicles for the treatment of neurological diseases vol.39, pp.12, 2020, https://doi.org/10.1002/stem.3456
  15. Involvement of various chemokine/chemokine receptor axes in trafficking and oriented locomotion of mesenchymal stem cells in multiple sclerosis patients vol.148, 2020, https://doi.org/10.1016/j.cyto.2021.155706
  16. Differentiation of human adult-derived stem cells towards a neural lineage involves a dedifferentiation event prior to differentiation to neural phenotypes vol.11, pp.1, 2020, https://doi.org/10.1038/s41598-021-91566-9
  17. Human fetal liver MSCs are more effective than adult bone marrow MSCs for their immunosuppressive, immunomodulatory, and Foxp3+ T reg induction capacity vol.12, pp.1, 2021, https://doi.org/10.1186/s13287-021-02176-1
  18. Small Extracellular Vesicles Derived from Human Chorionic MSCs as Modern Perspective towards Cell-Free Therapy vol.22, pp.24, 2020, https://doi.org/10.3390/ijms222413581
  19. Stalling SARS-CoV2 infection with stem cells: can regenerating perinatal tissue mesenchymal stem cells offer a multi-tiered therapeutic approach to COVID-19? vol.117, 2022, https://doi.org/10.1016/j.placenta.2021.12.005
  20. Practical considerations in transforming MSC therapy for neurological diseases from cell to EV vol.349, 2020, https://doi.org/10.1016/j.expneurol.2021.113953