References
- Achanta, P., Sedora Roman, N. I. and Quinones-Hinojosa, A. (2010) Gliomagenesis and the use of neural stem cells in brain tumor treatment. Anticancer Agents Med. Chem. 10, 121-130. https://doi.org/10.2174/187152010790909290
- Ahmadi, N., Razavi, S., Kazemi, M. and Oryan, S. (2012) Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue Cell 44, 87-94. https://doi.org/10.1016/j.tice.2011.11.006
- Alexanian, A. R. (2015) Epigenetic modulators promote mesenchymal stem cell phenotype switches. Int. J. Biochem. Cell Biol. 64, 190-194. https://doi.org/10.1016/j.biocel.2015.04.010
- Alexanian, A. R., Liu, Q. S. and Zhang, Z. (2013) Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes, SMAD signaling and cyclic adenosine monophosphate levels. Int. J. Biochem. Cell Biol. 45, 1633-1638. https://doi.org/10.1016/j.biocel.2013.04.022
- Arboleda, D., Forostyak, S., Jendelova, P., Marekova, D., Amemori, T., Pivonkova, H., Masinova, K. and Sykova, E. (2011) Transplantation of predifferentiated adipose-derived stromal cells for the treatment of spinal cord injury. Cell. Mol. Neurobiol. 31, 1113-1122. https://doi.org/10.1007/s10571-011-9712-3
- Ardeshiry Lajimi, A., Hagh, M. F., Saki, N., Mortaz, E., Soleimani, M. and Rahim, F. (2013) Feasibility of cell therapy in multiple sclerosis: A systematic review of 83 studies. Int. J. Hematol. Oncol. Stem Cell Res. 7, 15-33.
- Asokan, A., Ball, A. R., Laird, C. D., Hermer, L. and Ormerod, B. K. (2014) Desvenlafaxine may accelerate neuronal maturation in the dentate gyri of adult male rats. PLoS ONE 9, e98530. https://doi.org/10.1371/journal.pone.0098530
- Bali, P., Lahiri, D. K., Banik, A., Nehru, B. and Anand, A. (2017) Potential for stem cells therapy in Alzheimer's disease: Do neurotrophic factors play critical role? Curr. Alzheimer Res. 14, 208-220. https://doi.org/10.2174/1567205013666160314145347
- Bhang, S. H., Lee, Y. E., Cho, S. W., Shim, J. W., Lee, S. H., Choi, C. Y., Chang, J. W. and Kim, B. S. (2007) Basic fibroblast growth factor promotes bone marrow stromal cell transplantation-mediated neural regeneration in traumatic brain injury. Biochem. Biophys. Res. Commun. 359, 40-45. https://doi.org/10.1016/j.bbrc.2007.05.046
- Boku, S., Nakagawa, S. and Koyama, T. (2010) Glucocorticoids and lithium in adult hippocampal neurogenesis. Vitam. Horm. 82, 421-431. https://doi.org/10.1016/S0083-6729(10)82021-7
- Borkowska, P., Kowalska, J., Fila-Danilow, A., Bielecka, A. M., Paul-Samojedny, M., Kowalczyk, M. and Kowalski, J. (2015) Affect of antidepressants on the in vitro differentiation of rat bone marrow mesenchymal stem cells into neuronal cells. Eur. J. Pharm. Sci. 73, 81-87. https://doi.org/10.1016/j.ejps.2015.03.016
- Budoni, M., Fierabracci, A., Luciano, R., Petrini, S., Di Ciommo, V. and Muraca, M. (2013) The immunosuppressive effect of mesenchymal stromal cells on B lymphocytes is mediated by membrane vesicles. Cell Transplant. 22, 369-379. https://doi.org/10.3727/096368911X582769b
- Clement, F., Grockowiak, E., Zylbersztejn, F., Fossard, G., Gobert, S. and Maguer-Satta, V. (2017) Stem cell manipulation, gene therapy and the risk of cancer stem cell emergence. Stem Cell Investig. 4, 67. https://doi.org/10.21037/sci.2017.07.03
- Croft, A. P. and Przyborski, S. A. (2006) Formation of neurons by nonneural adult stem cells: Potential mechanism implicates an artifact of growth in culture. Stem Cells 24, 1841-1851. https://doi.org/10.1634/stemcells.2005-0609
- Chen, Y. T., Sun, C. K., Lin, Y. C., Chang, L. T., Chen, Y. L., Tsai, T. H., Chung, S. Y., Chua, S., Kao, Y. H., Yen, C. H., Shao, P. L., Chang, K. C., Leu, S. and Yip, H. K. (2011) Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J. Transl. Med. 9, 51. https://doi.org/10.1186/1479-5876-9-51
- Choi, S. A., Lee, J. Y., Wang, K. C., Phi, J. H., Song, S. H., Song, J. and Kim, S. K. (2012) Human adipose tissue-derived mesenchymal stem cells: Characteristics and therapeutic potential as cellular vehicles for prodrug gene therapy against brainstem gliomas. Eur. J. Cancer 48, 129-137.
- Chun, S. Y., Soker, S., Jang, Y. J., Kwon, T. G. and Yoo, E. S. (2016) Differentiation of human dental pulp stem cells into dopaminergic neuron-like cells in vitro. J. Korean Med. Sci. 31,171-177. https://doi.org/10.3346/jkms.2016.31.2.171
- Dong, X., Pan, R., Zhang, H., Yang, C., Shao, J. and Xiang, L. (2013) Modification of histone acetylation facilitates hepatic differentiation of human bone marrow mesenchymal stem cells. PLoS ONE 8, e63405. https://doi.org/10.1371/journal.pone.0063405
- Drela, K., Siedlecka, P., Sarnowska, A. and Domanska-Janik, K. (2013) Human mesenchymal stem cells in the treatment of neurological diseases. Acta Neurobiol. Exp. (Wars.) 73, 38-56.
- Ferro, F., Spelat, R., Falini, G., Gallelli, A., D'Aurizio, F., Puppato, E., Pandolfi, M., Beltrami, A. P., Cesselli, D., Beltrami, C. A., Ambesi-Impiombato, F. S. and Curcio, F. (2011) Adipose tissue-derived stem cell in vitro differentiation in a three-dimensional dental bud structure. Am. J. Pathol. 178, 2299-2310. https://doi.org/10.1016/j.ajpath.2011.01.055
- Ferroni, L., Gardin, C., Tocco, I., Epis, R., Casadei, A., Vindigni, V., Mucci, G. and Zavan, B. (2013) Potential for neural differentiation of mesenchymal stem cells. Adv. Biochem. Eng. Biotechnol. 129, 89-115.
- Fila-Danilow, A., Borkowska, P., Paul-Samojedny, M., Kowalczyk, M. and Kowalski, J. (2017) The influence of TSA and VPA on the in vitro differentiation of bone marrow mesenchymal stem cells into neuronal lineage cells: Gene expression studies. Postepy Hig. Med. Dosw. (Online) 71, 236-242.
- Frese, L., Dijkman, P. E. and Hoerstrup, S. P. (2016) Adipose tissuederived stem cells in regenerative medicine. Transfus. Med. Hemother. 43, 268-274. https://doi.org/10.1159/000448180
- Friedenstein, A. J., Deriglasova, U. F., Kulagina, N. N., Panasuk, A. F., Rudakowa, S. F., Luria, E. A. and Ruadkow, I. A. (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp. Hematol. 2, 83-92.
- Fu, L., Zhu, L., Huang, Y., Lee, T. D., Forman, S. J. and Shih, C. C. (2008) Derivation of neural stem cells from mesenchymal stemcells: Evidence for a bipotential stem cell population. Stem Cells Dev. 17, 1109-1121. https://doi.org/10.1089/scd.2008.0068
- Gage, F. H. and Temple, S. (2013) Neural stem cells: Generating and regenerating the brain. Neuron 80, 588-601. https://doi.org/10.1016/j.neuron.2013.10.037
- Gao, S., Zhao, P., Lin, C., Sun, Y., Wang, Y., Zhou, Z., Yang, D., Wang, X., Xu, H., Zhou, F., Cao, L., Zhou, W., Ning, K., Chen, X. and Xu, J. (2014a) Differentiation of human adipose-derived stem cells into neuron-like cells which are compatible with photocurable threedimensional scaffolds. Tissue Eng. Part A 20, 1271-1284. https://doi.org/10.1089/ten.tea.2012.0773
- Gao, Y., Bai, C., Wang, K., Sun, B., Guan, W. and Zheng, D. (2014b) All-trans retinoic acid promotes nerve cell differentiation of yolk sac-derived mesenchymal stem cells. Appl. Biochem. Biotechnol. 174, 682-692. https://doi.org/10.1007/s12010-014-1100-2
- Gu, W., Zhang, F., Xue, Q., Ma, Z., Lu, P. and Yu, B. (2010) Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord. Neuropathology 30, 205-217. https://doi.org/10.1111/j.1440-1789.2009.01063.x
- Halder, D., Kim, G. H. and Shin, I. (2015) Synthetic small molecules that induce neuronal differentiation in neuroblastoma and fibroblast cells. Mol. Biosyst. 11, 2727-2737. https://doi.org/10.1039/C5MB00161G
- Han, Z. C., Du, W. J., Han, Z. B. and Liang, L. (2017) New insights into the heterogeneity and functional diversity of human mesenchymal stem cells. Biomed. Mater. Eng. 28, S29-S45.
- Hasan, A., Deeb, G., Rahal, R., Atwi, K., Mondello, S., Marei, H. E., Gali, A. and Sleiman, E. (2017) Mesenchymal stem cells in the treatment of traumatic brain injury. Front. Neurol. 8, 28.
- Hawryluk, G. W., Mothe, A., Wang, J., Wang, S., Tator, C. and Fehlings, M. G. (2012) An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev. 21, 2222-2238. https://doi.org/10.1089/scd.2011.0596
- Herlofsen, S. R., Bryne, J. C., Hoiby, T., Wang, L., Issner, R., Zhang, X., Coyne, M. J., Boyle, P., Gu, H., Meza-Zepeda, L. A., Collas, P., Mikkelsen, T. S. and Brinchmann, J. E. (2013) Genome-wide map of quantified epigenetic changes during in vitro chondrogenic differentiation of primary human mesenchymal stem cells. BMC Genomics 14, 105. https://doi.org/10.1186/1471-2164-14-105
- Honczarenko, M., Le, Y., Swierkowski, M., Ghiran, I., Glodek, A. M. and Silberstein, L. E. (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24, 1030-1041. https://doi.org/10.1634/stemcells.2005-0319
- Hong, S. Q., Zhang, H. T., You, J., Zhang, M. Y., Cai, Y. Q., Jiang, X. D. and Xu, R. X. (2011) Comparison of transdifferentiated and untransdifferentiated human umbilical mesenchymal stem cells in rats after traumatic brain injury. Neurochem. Res. 36, 2391-2400. https://doi.org/10.1007/s11064-011-0567-2
- Ilic, D. and Polak, J. M. (2011) Stem cells in regenerative medicine: Introduction. Br. Med. Bull. 98, 117-126. https://doi.org/10.1093/bmb/ldr012
- Jaenisch, R. and Young, R. (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567-582. https://doi.org/10.1016/j.cell.2008.01.015
- Jahan, S., Kumar, D., Kumar, A., Rajpurohit, C. S., Singh, S., Srivastava, A., Pandey, A. and Pant, A. B. (2017) Neurotrophic factor mediated neuronal differentiation of human cord blood mesenchymal stem cells and their applicability to assess the developmental neurotoxicity. Biochem. Biophys. Res. Commun. 482, 961-967. https://doi.org/10.1016/j.bbrc.2016.11.140
- Jopling, C., Boue, S. and Izpisua Belmonte, J. C. (2011) Dedifferentiation, transdifferentiation and reprogramming: Three routes to regeneration. Nat. Rev. Mol. Cell Biol. 12, 79-89. https://doi.org/10.1038/nrm3043
- Kajiyama, H., Hamazaki, T. S., Tokuhara, M., Masui, S., Okabayashi, K., Ohnuma, K., Yabe, S., Yasuda, K., Ishiura, S., Okochi, H. and Asashima, M. (2010) Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. Int. J. Dev. Biol. 54, 699-705. https://doi.org/10.1387/ijdb.092953hk
- Kalladka, D. and Muir, K. W. (2014) Brain repair: Cell therapy in stroke. Stem Cells Cloning 7, 31-44. https://doi.org/10.2147/SCCAA.S38003
- Kemp, K., Hares, K., Mallam, E., Heesom, K. J., Scolding, N. and Wilkins, A. (2010) Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival. J. Neurochem. 114, 1569-1580. https://doi.org/10.1111/j.1471-4159.2009.06553.x
- Kim, H. S., Choi, D. Y., Yun, S. J., Choi, S. M., Kang, J. W., Jung, J. W., Hwang, D., Kim, K. P. and Kim, D. W. (2012) Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J. Proteome Res. 11, 839-849. https://doi.org/10.1021/pr200682z
- Krabbe, C., Zimmer, J. and Meyer, M. (2005) Neural transdifferentiation of mesenchymal stem cells--a critical review. APMIS 113, 831-844. https://doi.org/10.1111/j.1600-0463.2005.apm_3061.x
- Laroni, A., de Rosbo, N. K. and Uccelli, A. (2015) Mesenchymal stem cells for the treatment of neurological diseases: Immunoregulation beyond neuroprotection. Immunol. Lett. 168, 183-190. https://doi.org/10.1016/j.imlet.2015.08.007
- Lewis, C. M. and Suzuki, M. (2014) Therapeutic applications of mesenchymal stem cells for amyotrophic lateral sclerosis. Stem Cell Res. Ther. 5, 32. https://doi.org/10.1186/scrt421
- Liu, Q., Cheng, G., Wang, Z., Zhan, S., Xiong, B. and Zhao, X. (2015) Bone marrow-derived mesenchymal stem cells differentiate into nerve-like cells in vitro after transfection with brain-derived neurotrophic factor gene. In Vitro Cell. Dev. Biol. Anim. 51, 319-327. https://doi.org/10.1007/s11626-015-9875-1
- Liu, Y., Yi, X. C., Guo, G., Long, Q. F., Wang, X. A., Zhong, J., Liu, W. P., Fei, Z., Wang, D. M. and Liu, J. (2014) Basic fibroblast growth factor increases the transplantationmediated therapeutic effect of bone mesenchymal stem cells following traumatic brain injury. Mol. Med. Rep. 9, 333-339. https://doi.org/10.3892/mmr.2013.1803
- Lu, D., Li, Y., Wang, L., Chen, J., Mahmood, A. and Chopp, M. (2001) Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J. Neurotrauma 18, 813-819. https://doi.org/10.1089/089771501316919175
- Lu, P., Blesch, A. and Tuszynski, M. H. (2004) Induction of bone marrow stromal cells to neurons: Differentiation, transdifferentiation, or artifact? J. Neurosci. Res. 77, 174-191. https://doi.org/10.1002/jnr.20148
- Lunn, J. S., Sakowski, S. A., Hur, J. and Feldman, E. L. (2011) Stem cell technology for neurodegenerative diseases. Ann. Neurol. 70, 353-361. https://doi.org/10.1002/ana.22487
- Mahla, R. S. (2016) Stem cells applications in regenerative medicine and disease therapeutics. Int. J. Cell Biol. 2016, 6940283. https://doi.org/10.1155/2016/6940283
- Mahmood, A., Lu, D., Lu, M. and Chopp, M. (2003) Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 53, 697-702; discussion 702-703. https://doi.org/10.1227/01.NEU.0000079333.61863.AA
- Mahmood, A., Lu, D., Wang, L. and Chopp, M. (2002) Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. J. Neurotrauma 19, 1609-1617. https://doi.org/10.1089/089771502762300265
- Maltman, D. J., Hardy, S. A. and Przyborski, S. A. (2011) Role of mesenchymal stem cells in neurogenesis and nervous system repair. Neurochem. Int. 59, 347-356. https://doi.org/10.1016/j.neuint.2011.06.008
- Marei, H. E. S., El-Gamal, A., Althani, A., Afifi, N., Abd-Elmaksoud, A., Farag, A., Cenciarelli, C., Thomas, C. and Anwarul H. (2018) Cholinergic and dopaminergic neuronal differentiation of human adipose tissue derived mesenchymal stem cells. J. Cell. Physiol. 233, 936-945. https://doi.org/10.1002/jcp.25937
- Mareschi, K., Novara, M., Rustichelli, D., Ferrero, I., Guido, D., Carbone, E., Medico, E., Madon, E., Vercelli, A. and Fagioli, F. (2006) Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types. Exp. Hematol. 34, 1563-1572. https://doi.org/10.1016/j.exphem.2006.06.020
- Maria Ferri, A. L., Bersano, A., Lisini, D., Boncoraglio, G., Frigerio, S. and Parati, E. (2016) Mesenchymal stem cells for ischemic stroke: Progress and possibilities. Curr. Med. Chem. 23, 1598-1608. https://doi.org/10.2174/0929867323666160222113702
- Morales-Garcia, J. A., Luna-Medina, R., Alonso-Gil, S., Sanz-Sancristobal, M., Palomo, V., Gil, C., Santos, A., Martinez, A. and Perez-Castillo, A. (2012) Glycogen synthase kinase 3 inhibition promotes adult hippocampal neurogenesis in vitro and in vivo. ACS Chem. Neurosci. 3, 963-971. https://doi.org/10.1021/cn300110c
- Mu, M. W., Zhao, Z. Y. and Li, C. G. (2015) Comparative study of neural differentiation of bone marrow mesenchymal stem cells by different induction methods. Genet. Mol. Res. 14, 14169-14176. https://doi.org/10.4238/2015.October.29.39
- Nadig, R. R. (2009) Stem cell therapy-Hype or hope? A review. J. Conserv. Dent. 12, 131-138. https://doi.org/10.4103/0972-0707.58329
- Nagai, A., Kim, W. K., Lee, H. J., Jeong, H. S., Kim, K. S., Hong, S. H., Park, I. H. and Kim, S. U. (2007) Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow. PLoS ONE 2, e1272. https://doi.org/10.1371/journal.pone.0001272
- Nakagawa, S. (2010) Involvement of neurogenesis in the action of psychotropic drugs. Nihon Shinkei Seishin Yakurigaku Zasshi 30, 109-113.
- Nasrallah, H. A., Hopkins, T. and Pixley, S. K. (2010) Differential effects of antipsychotic and antidepressant drugs on neurogenic regions in rats. Brain Res. 1354, 23-29. https://doi.org/10.1016/j.brainres.2010.07.075
- Qu, J. and Zhang, H. (2017) Roles of mesenchymal stem cells in spinal cord injury. Stem Cells Int. 2017, 5251313.
- Rafieemehr, H., Kheyrandish, M. and Soleimani, M. (2015) Neuroprotective effects of transplanted mesenchymal stromal cells-derived human umbilical cord blood neural progenitor cells in EAE. Iran. J. Allergy Asthma Immunol. 14, 596-604.
- Salehi, H., Amirpour, N., Niapour, A. and Razavi, S. (2016) An overview of neural differentiation potential of human adipose derived stem cells. Stem Cell Rev. 12, 26-41. https://doi.org/10.1007/s12015-015-9631-7
- Scuteri, A., Miloso, M., Foudah, D., Orciani, M., Cavaletti, G. and Tredici, G. (2011) Mesenchymal stem cells neuronal differentiation ability: A real perspective for nervous system repair? Curr. Stem Cell Res. Ther. 6, 82-92. https://doi.org/10.2174/157488811795495486
- Shahbazi, A., Safa, M., Alikarami, F., Kargozar, S., Asadi, M. H. and Joghataei, M. T. (2016) Rapid induction of neural differentiation in human umbilical cord matrix mesenchymal stem cells by cAMPelevating agents. Int. J. Mol. Cell. Med. 5, 167-177.
- Shi, Y., Hu, Y., Lv, C. and Tu, G. (2016) Effects of reactive oxygen species on differentiation of bone marrow mesenchymal stem cells. Ann. Transplant. 21, 695-700. https://doi.org/10.12659/AOT.900463
- Si, J. W., Wang, X. D. and Shen, S. G. (2015) Perinatal stem cells: A promising cell resource for tissue engineering of craniofacial bone. World J. Stem Cells 7, 149-159. https://doi.org/10.4252/wjsc.v7.i1.149
- Song, C. H., Honmou, O., Ohsawa, N., Nakamura, K., Hamada, H., Furuoka, H., Hasebe, R. and Horiuchi, M. (2009) Effect of transplantation of bone marrow-derived mesenchymal stem cells on mice infected with prions. J. Virol. 83, 5918-5927. https://doi.org/10.1128/JVI.00165-09
- Squillaro, T., Peluso, G. and Galderisi, U. (2016) Clinical trials with mesenchymal stem cells: An update. Cell Transplant. 25, 829-848. https://doi.org/10.3727/096368915X689622
- Sun, T. and Ma, Q. H. (2013) Repairing neural injuries using human umbilical cord blood. Mol. Neurobiol. 47, 938-945. https://doi.org/10.1007/s12035-012-8388-0
- Takeda, Y. S. and Xu, Q. (2015) Neuronal differentiation of human mesenchymal stem cells using exosomes derived from differentiating neuronal cells. PLoS ONE 10, e0135111. https://doi.org/10.1371/journal.pone.0135111
- Teixeira, F. G., Carvalho, M. M., Sousa, N. and Salgado, A. J. (2013) Mesenchymal stem cells secretome: A new paradigm for central nervous system regeneration? Cell. Mol. Life Sci. 70, 3871-3882. https://doi.org/10.1007/s00018-013-1290-8
- Teven, C. M., Liu, X., Hu, N., Tang, N., Kim, S. H., Huang, E., Yang, K., Li, M., Gao, J. L., Liu, H., Natale, R. B., Luther, G., Luo, Q., Wang, L., Rames, R., Bi, Y., Luo, J., Luu, H. H., Haydon, R. C., Reid, R. R. and He, T. C. (2011) Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int. 2011, 201371.
- Tomasoni, S., Longaretti, L., Rota, C., Morigi, M., Conti, S., Gotti, E., Capelli, C., Introna, M., Remuzzi, G. and Benigni, A. (2013) Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev. 22, 772-780. https://doi.org/10.1089/scd.2012.0266
- Ullah, I., Subbarao, R. B. and Rho, G. J. (2015) Human mesenchymal stem cells-current trends and future prospective. Biosci. Rep. 35, e00191. https://doi.org/10.1042/BSR20150025
- Wakao, S., Kuroda, Y., Ogura, F., Shigemoto, T. and Dezawa, M. (2012) Regenerative effects of mesenchymal stem cells: Contribution of muse cells, a novel pluripotent stem cell type that resides in mesenchymal cells. Cells 1, 1045-1060. https://doi.org/10.3390/cells1041045
- Wang, N., Xu, Y., Qin, T., Wang, F. P., Ma, L. L., Luo, X. G. and Zhang, T. C. (2013) Myocardin-related transcription factor-A is a key regulator in retinoic acid-induced neural-like differentiation of adult bone marrow-derived mesenchymal stem cells. Gene 523, 178-186. https://doi.org/10.1016/j.gene.2013.03.043
- Wang, S. P., Wang, Z. H., Peng, D. Y., Li, S. M., Wang, H. and Wang, X. H. (2012) Therapeutic effect of mesenchymal stem cells in rats with intracerebral hemorrhage: Reduced apoptosis and enhanced neuroprotection. Mol. Med. Rep. 6, 848-854. https://doi.org/10.3892/mmr.2012.997
- Woodbury, D., Schwarz, E. J., Prockop, D. J. and Black, I. B. (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61, 364-370. https://doi.org/10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
- Woodcock, T. and Morganti-Kossmann, M. C. (2013) The role of markers of inflammation in traumatic brain injury. Front. Neurol. 4, 18. https://doi.org/10.3389/fneur.2013.00018
- Wyse, R. D., Dunbar, G. L. and Rossignol, J. (2014) Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int. J. Mol. Sci. 15, 1719-1745. https://doi.org/10.3390/ijms15021719
- Xu, J., Lu, H., Miao, Z. N., Wu, W. J., Jiang, Y. Z., Ge, F., Fang, W. F., Zhu, A. H., Chen, G., Zhou, J. H., Lu, Y. Z., Tang, Z. F. and Wang, Y. (2016) Immunoregulatory effect of neuronal-like cells in inducting differentiation of bone marrow mesenchymal stem cells. Eur. Rev. Med. Pharmacol. Sci. 20, 5041-5048.
- Yan, Z. J., Zhang, P., Hu, Y. Q., Zhang, H. T., Hong, S. Q., Zhou, H. L., Zhang, M. Y. and Xu, R. X. (2013) Neural stem-like cells derived from human amnion tissue are effective in treating traumatic brain injury in rat. Neurochem. Res. 38, 1022-1033. https://doi.org/10.1007/s11064-013-1012-5
- Ying, C., Hu, W., Cheng, B., Zheng, X. and Li, S. (2012) Neural differentiation of rat adipose-derived stem cells in vitro. Cell. Mol. Neurobiol. 32, 1255-1263. https://doi.org/10.1007/s10571-012-9850-2
- Yoo, S. W., Kim, S. S., Lee, S. Y., Lee, H. S., Kim, H. S., Lee, Y. D. and Suh-Kim, H. (2008) Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp. Mol. Med. 40, 387-397. https://doi.org/10.3858/emm.2008.40.4.387
- Yousef, B., Sanooghi, D., Faghihi, F., Joghataei, M. T. and Latifi, N. (2017) Evaluation of motor neuron differentiation potential of human umbilical cord blood-derived mesenchymal stem cells, in vitro. J. Chem. Neuroanat. 81, 18-26. https://doi.org/10.1016/j.jchemneu.2017.01.003
- Zanni, G., Michno, W., Di Martino, E., Tjarnlund-Wolf, A., Pettersson, J., Mason, C. E., Hellspong, G., Blomgren, K. and Hanrieder, J. (2017) Lithium accumulates in neurogenic brain regions as revealed by high resolution ion imaging. Sci. Rep. 7, 40726. https://doi.org/10.1038/srep40726
- Zemel’ko, V. I., Kozhukharova, I. V., Kovaleva, Z. V., Domnina, A. P., Pugovkina, N. A., Fridlianskaia, I. I., Puzanov, M. V., Anisimov, S. V., Grinchuk, T. M. and Nikol’skii, N. N. (2014) BDNF secretion in human mesenchymal stem cells isolated from bone marrow, endometrium and adipose tissue. Tsitologiia 56, 204-211.
- Zemel’ko, V. I., Kozhukharova, I. B., Alekseenko, L. L., Domnina, A. P., Reshetnikova, G. F., Puzanov, M. V., Dmitrieva, R. I., Grinchuk, T. M., Nikol’skii, N. N. and Anisimov, S. V. (2013) Neurogenic potential of human mesenchymal stem cells isolated from bone marrow, adipose tissue and endometrium: a comparative study. Tsitologiia 55, 101-110.
- Zhang, H., Huang, Z., Xu, Y. and Zhang, S. (2006) Differentiation and neurological benefit of the mesenchymal stem cells transplanted into the rat brain following intracerebral hemorrhage. Neurol. Res. 28, 104-112. https://doi.org/10.1179/016164106X91960
- Zhang, Y. J., Zhang, W., Lin, C. G., Ding, Y., Huang, S. F., Wu, J. L., Li, Y., Dong, H. and Zeng, Y. S. (2012) Neurotrophin-3 gene modified mesenchymal stem cells promote remyelination and functional recovery in the demyelinated spinal cord of rats. J. Neurol. Sci. 313, 64-74. https://doi.org/10.1016/j.jns.2011.09.027
- Zhu, Y., Liu, T., Song, K., Ning, R., Ma, X. and Cui, Z. (2009) ADSCs differentiated into cardiomyocytes in cardiac microenvironment. Mol. Cell. Biochem. 324, 117-129. https://doi.org/10.1007/s11010-008-9990-3
Cited by
- Human Mesenchymal Stem Cells for Spinal Cord Injury vol.15, 2020, https://doi.org/10.2174/1574888x15666200316164051
- Role of Mesenchymal Stem Cells in Counteracting Oxidative Stress—Related Neurodegeneration vol.21, pp.9, 2020, https://doi.org/10.3390/ijms21093299
- Therapeutic Efficacy of Bone Marrow Derived Mesenchymal Stem Cells in Ototoxic Sensorineural Hearing Loss vol.63, pp.12, 2020, https://doi.org/10.3342/kjorl-hns.2020.00759
- An Update on the Potential of Mesenchymal Stem Cell Therapy for Cutaneous Diseases vol.2021, 2021, https://doi.org/10.1155/2021/8834590
- Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance vol.12, 2020, https://doi.org/10.3389/fimmu.2021.656364
- Neuroprotection and Axonal Regeneration Induced by Bone Marrow Mesenchymal Stromal Cells Depend on the Type of Transplant vol.9, 2020, https://doi.org/10.3389/fcell.2021.772223
- The Chemokine Receptors Ccr5 and Cxcr6 Enhance Migration of Mesenchymal Stem Cells into the Degenerating Retina vol.29, pp.2, 2020, https://doi.org/10.1016/j.ymthe.2020.10.026
- Eradication of specific donor-dependent variations of mesenchymal stem cells in immunomodulation to enhance therapeutic values vol.12, pp.4, 2021, https://doi.org/10.1038/s41419-021-03644-5
- Peripheral Nerve-Derived Stem Cell Spheroids Induce Functional Recovery and Repair after Spinal Cord Injury in Rodents vol.22, pp.8, 2021, https://doi.org/10.3390/ijms22084141
- 22(R)-hydroxycholesterol for dopaminergic neuronal specification of MSCs and amelioration of Parkinsonian symptoms in rats vol.7, pp.1, 2020, https://doi.org/10.1038/s41420-020-00351-6
- 3D Bioprinting Mesenchymal Stem Cell-Derived Neural Tissues Using a Fibrin-Based Bioink vol.11, pp.8, 2020, https://doi.org/10.3390/biom11081250
- Differences and similarities between mesenchymal stem cell and endothelial progenitor cell immunoregulatory properties against T cells vol.13, pp.8, 2021, https://doi.org/10.4252/wjsc.v13.i8.971
- Chromatin remodeling due to degradation of citrate carrier impairs osteogenesis of aged mesenchymal stem cells vol.1, pp.9, 2020, https://doi.org/10.1038/s43587-021-00105-8
- Intranasal delivery of mesenchymal stem cells‐derived extracellular vesicles for the treatment of neurological diseases vol.39, pp.12, 2020, https://doi.org/10.1002/stem.3456
- Involvement of various chemokine/chemokine receptor axes in trafficking and oriented locomotion of mesenchymal stem cells in multiple sclerosis patients vol.148, 2020, https://doi.org/10.1016/j.cyto.2021.155706
- Differentiation of human adult-derived stem cells towards a neural lineage involves a dedifferentiation event prior to differentiation to neural phenotypes vol.11, pp.1, 2020, https://doi.org/10.1038/s41598-021-91566-9
- Human fetal liver MSCs are more effective than adult bone marrow MSCs for their immunosuppressive, immunomodulatory, and Foxp3+ T reg induction capacity vol.12, pp.1, 2021, https://doi.org/10.1186/s13287-021-02176-1
- Small Extracellular Vesicles Derived from Human Chorionic MSCs as Modern Perspective towards Cell-Free Therapy vol.22, pp.24, 2020, https://doi.org/10.3390/ijms222413581
- Stalling SARS-CoV2 infection with stem cells: can regenerating perinatal tissue mesenchymal stem cells offer a multi-tiered therapeutic approach to COVID-19? vol.117, 2022, https://doi.org/10.1016/j.placenta.2021.12.005
- Practical considerations in transforming MSC therapy for neurological diseases from cell to EV vol.349, 2020, https://doi.org/10.1016/j.expneurol.2021.113953