DOI QR코드

DOI QR Code

Numerical Study on Propeller Cavitation and Pressure Fluctuation of Model and Full Scale ship for a MR Tanker

MR Tanker 실선 및 모형선 프로펠러 캐비테이션 및 변동압력 수치해석 연구

  • Park, Il-Ryong (Department of Naval Architecture and Ocean Engineering, Dong-Eui University) ;
  • Kim, Ki-Sup (Korea Research Institute of Ships & Ocean Engineering, Korea Institute of Ocean Science & Technology) ;
  • Kim, Je-In (Marine Hydrodynamic Performance Research Center, Dong-Eui University) ;
  • Seol, Han-shin (Korea Research Institute of Ships & Ocean Engineering, Korea Institute of Ocean Science & Technology) ;
  • Park, Young-Ha (Korea Research Institute of Ships & Ocean Engineering, Korea Institute of Ocean Science & Technology) ;
  • Ahn, Jong-Woo (Korea Research Institute of Ships & Ocean Engineering, Korea Institute of Ocean Science & Technology)
  • 박일룡 (동의대학교 조선해양공학과) ;
  • 김기섭 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 김제인 (동의대학교 조선해양유체성능평가연구소) ;
  • 설한신 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 박영하 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 안종우 (한국해양과학기술원 부설 선박해양플랜트연구소)
  • Received : 2019.10.24
  • Accepted : 2020.01.14
  • Published : 2020.02.20

Abstract

Propeller cavitation extent, pressure fluctuation induced by cavitation, pressure distribution on propeller blade, total velocity distribution and nominal wake distribution for a MR Taker were computed in both conditions of model test and sea trial using a code STAR-CCM+. Then some of the results were compared with model test data at LCT and full-scale measurement (Ahn et al (2014); Kim et al (2014)] in order to confirm the availability of a numerical prediction method and to get the physical insight of local flow around a ship and propeller. The nominal wake distributions computed and measured by LDV velocimeter on the variation of on-coming velocity show the wake contraction characteristics proposed by Hoekstra (1974). The numerical prediction of propeller cavitation extent on a blade angular position and pressure fluctuation level on each location of pressure sensors are very similar with the experimental results.

Keywords

References

  1. Ahn, J. W., Paik, B. G., Seol, H. S., Park, Y. H., Kim, G. D., Kim, K. S., Jung, B. J. & Choi, S. J., 2016. Comparative study of full-scale propeller cavitation test and LCT model test for MR tanker. Journal of the Society of Naval Architects of Korea, 53(3), pp.171-179. https://doi.org/10.3744/SNAK.2016.53.3.171
  2. Choi, G. H., Chang, B. J., Hur, J. W. & Cho, D. S., 2011. Comparison of cavitation patterns between model-scale obser vations using model and full-scale wakes and full-scale observ ations for a propeller of crude oil carrier. Journal of the Society of Naval Architects of Korea, 48(1), pp.15-22. https://doi.org/10.3744/SNAK.2011.48.15
  3. Choi, J.E. Min, K.S. Chung, S.H. & Seo, H.W., 2003. Study on the scale effects on the flow characteristics around a full slow-speed ship. Proceedings of the 8th Numerical Ship Hydrodynamics, Pusan, Republic of Korea, 22 September 2003.
  4. Hoekstra M. 1974. Prediction of full scale wake characteristics base on model wake survey. International Shipbuilding Progress, 22(250), pp.204-219. https://doi.org/10.3233/ISP-1975-2225002
  5. Hochkirch, K. & Mallol, B., 2013. On the importance of full-scale CFD simulations for ships. Proceedings of the 12th International Conference on Computer Applications and Information Technology in the Maritime Industries, Cortona, Italy, 15-17 April 2013.
  6. ITTC, 1987. Report of The Cavitation Committee, 18th International Towing Tank Commitee, Kobe, Japan, October 1987.
  7. Ji, B., Luo, X. W., Wu, Y. L., Liu S. H., Xu, H. Y. & Oshima A., 2010. Numerical investigation of unsteady cavitating turbulent flow around a full scale marine propeller. 9th International Conference of Hydrodynamics, Shanghai, China, 11-15 October 2010.
  8. Carlton, J.S., 1994. Marine Propeller and Propulsion, Butterworth-Heinemann.
  9. Kim, K. S., Ahn, J. W., Park, Y.H., Kim, G. D., Kim, S. P., Yu, Y. W. & Lee C. S., 2013. Correlation study on pressure fluctuation measurement at large cavitation tunnel with full-scal e data for two container carriers. 12th International Symposium on Practical Design of Ships and Other Floating Structures, Changwon, Republic of Korea, 24-27 October 2013.
  10. Kim, J. I., Park, I. R., Kim, K. S. & Ahn, J. W., 2017. Numerical analysis of non-cavitating and cavitating performance of a SVA Potsdam propeller. Journal of the Society of Naval Architects of Korea, 54(3), pp.215-226. https://doi.org/10.3744/SNAK.2017.54.3.215
  11. Kim, K. S. Kim, K. Y. Ahn, J. W. & Lee J. T, 2000. Effect of Reynolds number, leading edge roughness and air content on the cavitation performance of model propellers. Journal of the Society of Naval Architects of Korea, 37(1), pp.10-25.
  12. Kim, K. S. et. al., 2009. Construction of the low noise large cavitation tunnel. KRISO Report No. UCPNS101A-2100-7.
  13. Kim, K. S., Park, Y.H., Ahn, J. W., Kim, G. D. & Kim, S. P., 2010. A Study of propeller cavitation of a LNG carrier in large cavitation tunnel. Proceedings of Society of Naval Architects of Korea, July 2010.
  14. Kim, K. S., Paik, B. G., Ahn, J. W., Park, Y. H. & Kim, G. D., 2010. A Propeller cavitation test and PIV measurements method in LCT and MCT of MOERI. Proceeding of International Propulsion Symposium IPS'10, Okayama, Japan, 19-20 April 2010.
  15. Kim, K. S., Ahn, J. W., Moon I. S. et al., 2014. Development of cavitation performance control technology for environment-friendly propulsion. Final report of KRISO.
  16. Launder, B.E., Reece, G.J. & Rodi, W., 1975. Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 68(3), pp.537-566. https://doi.org/10.1017/S0022112075001814
  17. Patankar, S.V., 1980. Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington D.C.
  18. Salvatore, F., Streckwall, H. & Terwisga, T., 2009. Propeller cavitation modelling by CFD-results from the VIRTUE 2008 Rome Workshop. First International Symposium on Marine Propulsors smp'09, Trondheim, Norway, 22-24 June 2009.
  19. Sauer J., 2000. Instationar kavitierende Stromungen-Ein neues Modell, basierend auf Front Capturing (VoF) und Blasendynamik. PhD. thesis, Universitat Karlsruhe.
  20. Siemense, 2018. STAR-CCM+ 11.04 User Guide, URL: https://support.industrysoftware.automation.siemens.com/general/documentation.shtml (Accessed 1 January 2018).
  21. Yang, H. U., Kim, B. N., Yoo, J. H. & Kim, W. J., 2010. Wake comparison between model and full scale ships using CFD. Journal of the Society of Naval Architects of Korea, 47(2), pp.150-162. https://doi.org/10.3744/SNAK.2010.47.2.150