References
- Andre, D., Iordanoff, I., Charles, JL. & Neauport, J., 2012. Discrete element method to simulate continuous material by using the cohesive beam model. Computer Methods in Applied Mechanics and Engineering, 213, pp.113-125. https://doi.org/10.1016/j.cma.2011.12.002
- Chikazawa, Y., Koshizuka, S. & Oka, Y., 2001. A particle method for elastic and visco-plastic structures and fluid-structure interactions. Computational Mechanics, 27(2), pp.97-106. https://doi.org/10.1007/s004660000216
- Gonzalez, O. & Stuart, A.M., 2008. A first course in continuum mechanics. Cambridge University Press.
- Hertz, HR., 1882. Uber die Beruhrung fester elastischer Korper und Uber die Harte. Verhandlung des Vereins zur Beforderung des GewerbefleiBes, Berlin, 1882.
- Huisman, M., JanBen, C.F., Rung, T. & Ehlers, S., 2016. Numerical simulation of ship-ice interactions with physics engines under consideration of ice breaking. In The 26th International Ocean and Polar Engineering Conference. Rhodes, Greece.
- Hwang, S.C., 2013. Development of particle simulation method for analysis of fluid-structure interaction problems. Journal of Ocean Engineering and Technology, 27(2), pp.53-58. https://doi.org/10.5574/KSOE.2013.27.2.053
- Hwang, S.C., Khayyer, A., Gotoh, H., & Park, J.C., 2014. Development of a fully Lagrangian MPS-based coupled method for simulation of fluid-structure interaction problems. Journal of Fluids and Structures, 50, pp.497-511. https://doi.org/10.1016/j.jfluidstructs.2014.07.007
- Hwang, S.C., Park, J.C., Gotoh, H., Khayyer, A. & Kang, K.J., 2016. Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid-structure interaction analysis method. Ocean Engineering, 118, pp.227-241. https://doi.org/10.1016/j.oceaneng.2016.04.006
- Jeong, S.M., Nam, J.W., Hwang, S.C., Park, J.C. & Kim, M.H., 2013. Numerical prediction of oil amount leaked from a damaged tank using two-dimensional moving particle simulation method. Ocean Engineering, 69, pp.70-78. https://doi.org/10.1016/j.oceaneng.2013.05.009
- Jeong, S.Y., Choi, K., Kang, K.J. & Ha, J.S., 2017. Prediction of ship resistance in level ice based on empirical approach. International Journal of Naval Architecture and Ocean Engineering, 9(6), pp.613-623. https://doi.org/10.1016/j.ijnaoe.2017.03.007
- Ji, S., Di, S. & Liu, S., 2015. Analysis of ice load on conical structure with discrete element method. Engineering Computations, 32(4), pp.1121-1134. https://doi.org/10.1108/EC-04-2014-0090
- Ji, S., Di, S. & Long, X., 2016. DEM simulation of uniaxial compressive and flexural strength of sea ice: parametric study. Journal of Engineering Mechanics, 143(1), C4016010. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000996
- Juvinall, R.C. & Marshek, K.M., 2007. Fundamentals of machine component design. 5th Ed. John Wiley & Sons: New York.
- Ko, D., Park, K.D. & Ahn, K., 2016. Time domain simulation for icebreaking and turning capability of bow-first icebreaking models in level ice. International Journal of Naval Architecture and Ocean Engineering, 8(3), pp.228-234. https://doi.org/10.1016/j.ijnaoe.2016.02.004
- Khayyer, A. & Gotoh, H., 2011. Enhancement of stability and accuracy of the moving particle semi-implicit method. Journal of Computational Physics, 230(8), pp.3093-3118. https://doi.org/10.1016/j.jcp.2011.01.009
- Khayyer, A., Gotoh, H., Falahaty, H. & Shimizu, Y., 2018. Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction. Journal of Hydrodynamics, 30(1), pp.49-61. https://doi.org/10.1007/s42241-018-0005-x
- Koshizuka, S. & Oka, Y., 1996. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Numerical Science and Engineering, 123, pp. 421-434.
- Lee, B.H., Park, J.C., Kim, M.H. & Hwang, S.C., 2011. Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads. Computer Methods in Applied Mechanics and Engineering, 200, pp.1113-1125. https://doi.org/10.1016/j.cma.2010.12.001
- Lindquist, A., 1989. Straightforward method for calculation of ice resistance of ships. POAC'89, Lulea, Sweden.
- Liu, G.R. & Liu, M.B., 2003. Smoothed particle hydrodynamics: a meshfree particle method. World Scientific: Singapore.
- Lu, W., Lubbad, R. & Loset, S., 2014. Simulating ice-sloping structure interactions with the cohesive element method. Journal of Offshore Mechanics and Arctic Engineering, 136(3), 031501. https://doi.org/10.1115/1.4026959
- Lu, W., Lubbad, R., Loset, S. & Kashafutdinov, M., 2016. Fracture of an ice floe: Local out-of-plane flexural failures versus global in-plane splitting failure. Cold Regions Science and Technology, 123, pp.1-13. https://doi.org/10.1016/j.coldregions.2015.11.010
- Lubbad, R. & Loset, S., 2011. A numerical model for real-time simulation of ship-ice interaction. Cold Regions Science and Technology, 65(2), pp.111-127. https://doi.org/10.1016/j.coldregions.2010.09.004
- Nevel, D.E., 1958. The narrow infinite wedge on an elastic foundation. US Army Snow Ice and Permafrost Research Establishment, Corps of Engineers Report No. TR56.
- Nevel, D.E., 1961. The narrow free infinite wedge on an elastic foundation. Cold regions research and engineering lab hanover NH Report No. RR79.
- Nevel, D.E., 1980. Bending and buckling of a wedge on an elastic foundation. In Physics and Mechanics of Ice, Springer, Berlin, Heidelberg, 1980.
- Press, W.H., Teukolsky, S.A. & Vetterling, W.T., 1992. Numerical Recipes in FORTRAN 77: The Art of Scientific Computing. Cambridge University Press.
- Ren, D., Park, J.C., Hwang, S.C., Jeong, S.Y. & Kim, H.S., 2019. Failure simulation of ice beam using a fully Lagrangian particle method. International Journal of Naval Architecture and Ocean Engineering, 11, pp.639-647. https://doi.org/10.1016/j.ijnaoe.2019.01.001
- Su, B., Riska, K. & Moan, T., 2010. A numerical method for the prediction of ship performance in level ice. Cold Regions Science and Technology, 60(3), pp.177-188. https://doi.org/10.1016/j.coldregions.2009.11.006
- Suzuki, Y., Koshizuka, S. & Oka, Y., 2007. Hamiltonian moving-particle semi-implicit (HMPS) method for incompressible fluid flows. Computer Methods in Applied Mechanics and Engineering, 196(29-30), pp.2876-2894. https://doi.org/10.1016/j.cma.2006.12.006
- Suzuki, Y. & Koshizuka, S., 2008. A Hamiltonian particle method for non‐linear elastodynamics. International Journal for Numerical Methods in Engineering, 74(8), pp.1344-1373. https://doi.org/10.1002/nme.2222
- Zhang, N., Zheng, X., Ma, Q. & Hu, Z., 2019. A numerical study on ice failure process and ice-ship interactions by Smoothed Particle Hydrodynamics. International Journal of Naval Architecture and Ocean Engineering, 11(2), pp.796-808. https://doi.org/10.1016/j.ijnaoe.2019.02.008