참고문헌
- Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sust. Energ. Rev. 14: 217-232. https://doi.org/10.1016/j.rser.2009.07.020
- Williams PJlB, Laurens LM. 2010. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energ. Environ. Sci. 3: 554-590. https://doi.org/10.1039/b924978h
- Shetty P, Gitau MM, Maroti G. 2019. Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells 8: 1-16. https://doi.org/10.3390/cells8010001
- Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour. Technol. 102: 71-81. https://doi.org/10.1016/j.biortech.2010.06.159
- Kumar SJ, Kumar GV, Dash A, Scholz P, Banerjee R. 2017. Sustainable green solvents and techniques for lipid extraction from microalgae: A review. Algal. Res. 21: 138-147. https://doi.org/10.1016/j.algal.2016.11.014
- Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, et al. 2010. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 28: 371-380. https://doi.org/10.1016/j.tibtech.2010.04.004
- Zeng X, Danquah MK, Chen XD, Lu Y. 2011. Microalgae bioengineering: from CO2 fixation to biofuel production. Renew. Sust. Energ. Rev. 15: 3252-3260. https://doi.org/10.1016/j.rser.2011.04.014
- Li K, Liu Q, Fang F, Luo R, Lu Q, Zhou W, et al. 2019. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresour. Technol. 291: 121934. https://doi.org/10.1016/j.biortech.2019.121934
- Leong YK, Chang J-S. 2020. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 303: 122886. https://doi.org/10.1016/j.biortech.2020.122886
- Al-Qasmi M, Raut N, Talebi S, Al-Rajhi S, Al-Barwani T. 2012. Presented at the Proceedings of the world congress on engineering.
- Dimitrova P, Marinova G, Alexandrov S, Iliev I, Pilarski P. 2017. Presented at the Youth Scientific Conference, Sofia 2016.
- Lakshmikandan M, Murugesan A, Wang S, Abomohra AE-F, Jovita PA, Kiruthiga S. 2020. Sustainable biomass production under CO2 conditions and effective wet microalgae lipid extraction for biodiesel production. J. Clean. Prod. 247: 119398. https://doi.org/10.1016/j.jclepro.2019.119398
- Griffiths MJ, Harrison ST. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21: 493-507. https://doi.org/10.1007/s10811-008-9392-7
- Anjos M, Fernandes BD, Vicente AA, Teixeira JA, Dragone G. 2013. Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour. Technol. 139: 149-154. https://doi.org/10.1016/j.biortech.2013.04.032
- Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen H-L. 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour. Technol. 101: 6797-6804. https://doi.org/10.1016/j.biortech.2010.03.120
- Safi C, Zebib B, Merah O, Pontalier P-Y, Vaca-Garcia C. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sust. Energ. Rev. 35: 265-278. https://doi.org/10.1016/j.rser.2014.04.007
- Sun L-Y, Cui W-J, Chen K-M. 2018. Two Mychonastes isolated from freshwater bodies are novel potential feedstocks for biodiesel production. Energ. Source Part A. 40: 1452-1460. https://doi.org/10.1080/15567036.2018.1477869
- Saadaoui I, Cherif M, Rasheed R, Bounnit T, Al Jabri H, Sayadi S, et al. 2020. Mychonastes homosphaera (Chlorophyceae): A promising feedstock for high quality feed production in the arid environment. Algal. Res. 51: 102021. https://doi.org/10.1016/j.algal.2020.102021
- Hu C-W, Chuang L-T, Yu P-C, Chen C-NN. 2013. Pigment production by a new thermotolerant microalga Coelastrella sp. F50. Food Chem. 138: 2071-2078. https://doi.org/10.1016/j.foodchem.2012.11.133
- Minhas AK, Hodgson P, Barrow CJ, Adholeya A. 2020. Two-phase method of cultivating Coelastrella species for increased production of lipids and carotenoids. Bioresour. Technol. Rep. 9: 100366. https://doi.org/10.1016/j.biteb.2019.100366
- Mayo AW, Noike T. 1994. Effect of glucose loading on the growth behavior of Chlorella vulgaris and heterotrophic bacteria in mixed culture. Water Res. 28: 1001-1008. https://doi.org/10.1016/0043-1354(94)90184-8
- Chen W, Zhang C, Song L, Sommerfeld M, Hu Q. 2009. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Meth. 77: 41-47. https://doi.org/10.1016/j.mimet.2009.01.001
- Hanagata N, Malinsky‐Rushansky N, Dubinsky Z. 1999. Eukaryotic picoplankton, Mychonastes homosphaera (Chlorophyceae, Chlorophyta), in Lake Kinneret, Israel. Phycol Res. 47: 263-269. https://doi.org/10.1046/j.1440-1835.1999.00176.x
- Yamamoto M, Fujishita M, Hirata A, Kawano S. 2004. Regeneration and maturation of daughter cell walls in the autosporeforming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae). J. Plant Res. 117: 257-264. https://doi.org/10.1007/s10265-004-0154-6
- Goecke F, Noda J, Paliocha M, Gislerod HR. 2020. Revision of Coelastrella (Scenedesmaceae, Chlorophyta) and first register of this green coccoid microalga for continental Norway. World J. Microbiol. Biotechnol. 36: 149. https://doi.org/10.1007/s11274-020-02897-0
- Khoshmanesh A, Lawson F, Prince IG. 1997. Cell surface area as a major parameter in the uptake of cadmium by unicellular green microalgae. Chem. Eng. 65: 13-19. https://doi.org/10.1016/S1385-8947(96)03091-4
- Sunda WG, Huntsman SA. 1997. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390: 389-392. https://doi.org/10.1038/37093
- Chen F. 1996. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 14: 421-426. https://doi.org/10.1016/0167-7799(96)10060-3
- Li T, Zheng Y, Yu L, Chen S. 2014. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenerg. 66: 204-213. https://doi.org/10.1016/j.biombioe.2014.04.010
- Singh S, Singh P. 2014. Effect of CO2 concentration on algal growth: a review. Renew. Sust. Energ. Rev. 38: 172-179. https://doi.org/10.1016/j.rser.2014.05.043
- Abou-Shanab RA, Hwang J-H, Cho Y, Min B, Jeon B-H. 2011. Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Appl. Energ. 88: 3300-3306. https://doi.org/10.1016/j.apenergy.2011.01.060
- Ahmad A, Yasin NM, Derek C, Lim J. 2011. Microalgae as a sustainable energy source for biodiesel production: a review. Renew. Sust. Energ. Rev. 15: 584-593. https://doi.org/10.1016/j.rser.2010.09.018
- Karpagam R, Raj KJ, Ashokkumar B, Varalakshmi P. 2015. Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: lipid enhancement methods and media optimization using response surface methodology. Bioresour. Technol. 188: 177-184. https://doi.org/10.1016/j.biortech.2015.01.053
- Sung K-D, Lee J-S, Shin C-S, Park S-C, Choi M-J. 1999. CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresour. Technol. 68: 269-273. https://doi.org/10.1016/S0960-8524(98)00152-7
- Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I. 1992. Tolerance of microalgae to high CO2 and high temperature. Phytochemistry. 31: 3345-3348. https://doi.org/10.1016/0031-9422(92)83682-O