References
- Jacques SL, Nieman C, Bareich D, Broadhead G, Kinach R, Honek JF, et al. 2001. Characterization of yeast homoserine dehydrogenase, an antifungal target: the invariant histidine 309 is important for enzyme integrity. Biochim. Biophys. Acta 1544: 28-41. https://doi.org/10.1016/S0167-4838(00)00203-X
- Akai S, Ikushiro H, Sawai T, Yano T, Kamiya N, Miyahara I. 2019. The crystal structure of homoserine dehydrogenase complexed with l-homoserine and NADPH in a closed form. J. Biochem. 165: 185-195. https://doi.org/10.1093/jb/mvy094
- DeLaBarre B, Thompson PR, Wright GD, Berghuis AM. 2000. Crystal structures of homoserine dehydrogenase suggest a novel catalytic mechanism for oxidoreductases. Nat. Struct. Biol. 7: 238-244. https://doi.org/10.1038/73359
- Hayashi J, Inoue S, Kim K, Yoneda K, Kawarabayasi Y, Ohshima T, et al. 2015. Crystal structures of a hyperthermophilic archaeal homoserine dehydrogenase suggest a novel cofactor binding mode for oxidoreductases. Sci. Rep. 5: 11674. https://doi.org/10.1038/srep11674
- Navratna V, Reddy G, Gopal B. 2015. Structural basis for the catalytic mechanism of homoserine dehydrogenase. Acta Crystallogr. D Biol. Crystallogr. 71: 1216-1225. https://doi.org/10.1107/S1399004715004617
- Tomonaga Y, Kaneko R, Goto M, Ohshima T, Yoshimune K. 2015. Structural insight into activation of homoserine dehydrogenase from the archaeon Sulfolobus tokodaii via reduction. Biochem. Biophys. Rep. 3: 14-17. https://doi.org/10.1016/j.bbrep.2015.07.006
- Curien G, Biou V, Mas-Droux C, Robert-Genthon M, Ferrer JL, Dumas R. 2008. Amino acid biosynthesis: new architectures in allosteric enzymes. Plant Physiol. Biochem. 46: 325-339. https://doi.org/10.1016/j.plaphy.2007.12.006
- Schuller DJ, Grant GA, Banaszak LJ. 1995. The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat. Struct. Biol. 2: 69-76. https://doi.org/10.1038/nsb0195-69
- Mas-Droux C, Curien G, Robert-Genthon M, Laurencin M, Ferrer JL, Dumas R. 2006. A novel organization of ACT domains in allosteric enzymes revealed by the crystal structure of Arabidopsis aspartate kinase. Plant Cell 18: 1681-1692. https://doi.org/10.1105/tpc.105.040451
- Yoshida A, Tomita T, Kurihara T, Fushinobu S, Kuzuyama T, Nishiyama M. 2007. Structural Insight into concerted inhibition of alpha 2 beta 2-type aspartate kinase from Corynebacterium glutamicum. J. Mol. Biol. 368: 521-536. https://doi.org/10.1016/j.jmb.2007.02.017
- Kaplun A, Vyazmensky M, Zherdev Y, Belenky I, Slutzker A, Mendel S, et al. 2006. Structure of the regulatory subunit of acetohydroxyacid synthase isozyme III from Escherichia coli. J. Mol. Biol. 357: 951-963. https://doi.org/10.1016/j.jmb.2005.12.077
- Gallagher DT, Gilliland GL, Xiao G, Zondlo J, Fisher KE, Chinchilla D, et al. 1998. Structure and control of pyridoxal phosphate dependent allosteric threonine deaminase. Structure 6: 465-475. https://doi.org/10.1016/S0969-2126(98)00048-3
- Micsonai A, Wien F, Kernya L, Lee YH, Goto Y, Refregiers M, et al. 2015. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl. Acad. Sci. USA 112: E3095-E3103. https://doi.org/10.1073/pnas.1500851112
- Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959-964. https://doi.org/10.1038/35023079
- Pucci F, Rooman M. 2017. Physical and molecular bases of protein thermal stability and cold adaptation. Curr. Opin. Struct. Biol. 42: 117-128. https://doi.org/10.1016/j.sbi.2016.12.007
Cited by
- Expression, purification, and biochemical characterization of an NAD+-dependent homoserine dehydrogenase from the symbiotic Polynucleobacter necessarius subsp. necessarius vol.188, 2020, https://doi.org/10.1016/j.pep.2021.105977