References
- Frontera WR, Ochala J. 2015. Skeletal muscle: a brief review of structure and function. Calcif. Tissue Int. 96: 183-195. https://doi.org/10.1007/s00223-014-9915-y
- Kunkel SD1 Suneja M, Ebert SM, Bongers KS, Fox DK, Malmberg SE, et al. 2011. mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metab. 13: 627-638. https://doi.org/10.1016/j.cmet.2011.03.020
- Le NH, Kim CS, Park T, Park JHY, Sung MK, Lee DG, et al. 2014. Quercetin protects against obesity-induced skeletal muscle inflammation and atrophy. Mediators Inflamm. 2014: 834294. https://doi.org/10.1155/2014/834294
- De Larichaudy J, Zufferli A, Serra F, Isidori AM, Naro F, Dessalle K, et al. 2012. TNF-α-and tumor-induced skeletal muscle atrophy involves sphingolipid metabolism. Skelet. Muscle 2: 2. https://doi.org/10.1186/2044-5040-2-2
- Mukund K, Subramaniam S. 2020. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 12: e1462.
- Sa BK, Kim C, Kim MB, Hwang JK. 2017. Panduratin A prevents tumor necrosis factor-alpha-induced muscle atrophy in L6 rat skeletal muscle cells. J. Med. Food 20: 1047-1054. https://doi.org/10.1089/jmf.2017.3970
- Bonaldo P, Sandri M. 2013. Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech. 6: 25-39. https://doi.org/10.1242/dmm.010389
- Wang D-T, Yin Y, Yang Y-J, Lv P-J, Shi Y, Lu L, et al. 2014. Resveratrol prevents TNF-α-induced muscle atrophy via regulation of Akt/mTOR/FoxO1 signaling in C2C12 myotubes. Int. Immunopharmacol. 19: 206-213. https://doi.org/10.1016/j.intimp.2014.02.002
- Ascenzi F, Barberi L, Dobrowolny G, Villa Nova Bacurau A, Nicoletti C, Rizzuto E, et al. 2019. Effects of IGF-1 isoforms on muscle growth and sarcopenia. Aging Cell 18: e12954. https://doi.org/10.1111/acel.12954
- Egerman MA, Glass DJ. 2014. Signaling pathways controlling skeletal muscle mass. Crit. Rev. Biochem. Mol. Biol. 49: 59-68. https://doi.org/10.3109/10409238.2013.857291
- Miao L-L, Zhou Q-M, Peng C, Liu Z-H, Xiong L. 2019. Leonurus japonicus (Chinese motherwort), an excellent traditional medicine for obstetrical and gynecological diseases: A comprehensive overview. Biomed. Pharmacother. 117: 109060. https://doi.org/10.1016/j.biopha.2019.109060
- Shang X, Pan H, Wang X, He H, Li M. 2014. Leonurus japonicus Houtt.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 152: 14-32. https://doi.org/10.1016/j.jep.2013.12.052
- Li YY, Lin YK, Liu XH, Wang L, Yu M, Li DJ, et al. 2020. Leonurinenurine: from gynecologic medicine to pleiotropic agent. Chin. J. Integr. Med. 26: 152-160. https://doi.org/10.1007/s11655-019-3453-0
- Glass DJ. 2005. Skeletal muscle hypertrophy and atrophy signaling pathways. Int. J. Biochem. Cell Biol. 37: 1974-1984. https://doi.org/10.1016/j.biocel.2005.04.018
- Lenk K, Schuler G, Adams V. 2010. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J. Cachexia Sarcopenia Muscle 1: 9-21. https://doi.org/10.1007/s13539-010-0007-1
- LaVigne E, Jones A, Londono AS, Schauer A, Patterson D, Nadeau J, et al. 2015. Muscle growth in young horses: Effects of age, cytokines, and growth factors. J. Anim. Sci. 93: 5672-5680. https://doi.org/10.2527/jas.2015-9634
- Shavlakadze T, Chai J, Maley K, Cozens G, Grounds G, Winn N, et al. 2010. A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo. J. Cell Sci. 123: 960-971. https://doi.org/10.1242/jcs.061119
- Liu X, Pan L, Gong Q, Zhu Y. 2010. Leonurinenurine (SCM-198) improves cardiac recovery in rat during chronic infarction. Eur. J. Pharmacol. 649: 236-241. https://doi.org/10.1016/j.ejphar.2010.08.056
- Nader GA. 2005. Molecular determinants of skeletal muscle mass: getting the "AKT" together. Int. J. Biochem. Cell Biol. 37: 1985-1996. https://doi.org/10.1016/j.biocel.2005.02.026
- Wang C, Zhang Z, Xu T, Lou Y, Wang Q, Jin H, et al. 2018. Upregulating mTOR/ERK signaling with Leonurinenurine for promoting angiogenesis and tissue regeneration in a full-thickness cutaneous wound model. Food Funct. 9: 2374-2385. https://doi.org/10.1039/c7fo01289f
- Shen S, Yu H, Gan L, Ye Y, Lin L. 2019. Natural constituents from food sources: potential therapeutic agents against muscle wasting. Food Funct. 10: 6967-6986. https://doi.org/10.1039/C9FO00912D
- Qi J, Hong ZY, Xin H, Zhu YZ. 2010. Neuroprotective effects of Leonurinenurine on ischemia/reperfusion-induced mitochondrial dysfunctions in rat cerebral cortex. Biol. Pharm. Bull. 33: 1958-1964. https://doi.org/10.1248/bpb.33.1958
- Kim C, Kim MB, Hwang JK. 2020. Red bean extract inhibits immobilization-induced muscle atrophy in C57BL/6N mice. J. Med. Food 23: 29-36. https://doi.org/10.1089/jmf.2019.4426
- Park SG, Jegal KH, Jung JY, Byun SH, Park SM, Kim SC, et al. 2014. Leonurinenuri fructus ameliorates acute inflammation via the inhibition of NF-κB-mediated nitric oxide and pro-inflammatory cytokine production. Korean J. Ori. Med. Physiol. Pathol. 28: 178-185.
- Xu D, Chen M, Ren X, Ren X, Wu Y. 2014. Leonurinenurine ameliorates LPS-induced acute kidney injury via suppressing ROSmediated NF-κB signaling pathway. Fitoterapia 97: 148-155. https://doi.org/10.1016/j.fitote.2014.06.005
- Lee SJ, Yoo M, Go GY, Hwang J, Lee HG, Kim YK, et al. 2014. Tetrahydropalmatine promotes myoblast differentiation through activation of p38MAPK and MyoD. Biochem. Biophys. Res. Commun. 455: 147-152. https://doi.org/10.1016/j.bbrc.2014.10.115
- Dyle MC, Ebert SM, Cook DP, Kunkel SD, Fox DK, Bongers KS, et al. 2014. Systems-based discovery of tomatidine as a natural small molecule inhibitor of skeletal muscle atrophy. J. Biol. Chem. 289: 14913-14924. https://doi.org/10.1074/jbc.M114.556241
- Jang YJ, Son HJ, Choi YM, Ahn J, Jung CH, Ha TY. 2017. Apigenin enhances skeletal muscle hypertrophy and myoblast differentiation by regulating Prmt7. Oncotarget 8: 78300-78311. https://doi.org/10.18632/oncotarget.20962
- Choi WH, Son HJ, Jang YJ, Ahn J, Jung CH, Ha TY. 2017. Apigenin ameliorates the obesity-induced skeletal muscle atrophy by attenuating mitochondrial dysfunction in the muscle of obese mice. Mol. Nutr. Food Res. 61: doi: 10.1002/mnfr.201700218.
- Wen Y, Ushio H. 2017. Ferulic acid promotes hypertrophic growth of fast skeletal muscle in zebrafish model. Nutrients 9: 1066. https://doi.org/10.3390/nu9101066