References
- Serrano-Ruiz JC, West RM, Dumesic JA. 2010. Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu. Rev. Chem. Biomol. Eng. 1: 79-100. https://doi.org/10.1146/annurev-chembioeng-073009-100935
- Nigam PS, Singh A. 2011. Production of liquid biofuels from renewable resources. Prog. Energy Combust. 37: 52-68. https://doi.org/10.1016/j.pecs.2010.01.003
- Soltys KA, Batta AK, Koneru B. 2001. Successful nonfreezing, subzero preservation of rat liver with 2,3-butanediol and type I antifreeze protein. J. Surg. Res. 96: 30-34. https://doi.org/10.1006/jsre.2000.6053
- Celinska E, Grajek W. 2009. Biotechnological production of 2,3-butanediol: current state and prospects. Biotechnol. Adv. 27: 715-725. https://doi.org/10.1016/j.biotechadv.2009.05.002
- Garg S, Jain A. 1995. Fermentative production of 2,3-butanediol: a review. Bioresour. Technol. 51: 103-109. https://doi.org/10.1016/0960-8524(94)00136-O
- Sukwong P, Ra CH, Sunwoo IY, Tantratian S, Jeong GT, Kim SK. 2018. Improved fermentation performance to produce bioethanol from Gelidium amansii using Pichia stipitis adapted to galactose. Bioprocess Biosyst. Eng. 41: 953-960. https://doi.org/10.1007/s00449-018-1926-z
- Kim SJ, Seo SO, Jin YS, Seo JH. 2013. Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour. Technol. 146: 274-281. https://doi.org/10.1016/j.biortech.2013.07.081
- Kim JW, Seo SO, Zhang GC, Jin YS, Seo JH. 2015. Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae. Bioresour. Tehcnol. 191: 512-519. https://doi.org/10.1016/j.biortech.2015.02.077
- Kildegaard KR, Wang Z, Chen Y, Nielsen J, Borodina I. 2015. Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae. Metab. Eng. Commun. 2: 132-136. https://doi.org/10.1016/j.meteno.2015.10.001
- Ishida N, Saitoh S, Onishi T, Tokuhiro K, Nagamori E, Kitamoto, K, et al. 2006. The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production. Biosci. Biotechnol. Biochem. 70: 1148-1153. https://doi.org/10.1271/bbb.70.1148
- Pronk JT, Steensma HY, vanDijken JP. 1996. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12: 1607-1633. https://doi.org/10.1002/(SICI)1097-0061(199612)12:16<1607::AID-YEA70>3.0.CO;2-4
- Choi EJ, Kim JW, Kim SJ, Seo SO, Lane S, Park YC, et al. 2016. Enhanced production of 2,3-butanediol in pyruvate decarboxylasedeficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose. Biotechnol. J. 11: 1424-1432. https://doi.org/10.1002/biot.201600042
- Flikweert MT, VanderZanden, L, Janssen WMTM, Steensma HY, VanDijken JP, Pronk J T. 1996. Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 12: 247-257. https://doi.org/10.1002/(SICI)1097-0061(19960315)12:3<247::AID-YEA911>3.0.CO;2-I
- AOAC (Association of Official Analytical Chemists). 1995. Official methods of analysis of the association of official analytical chemists, pp. 222-240. 16th edn. Association of Official Analytical Chemists, Arlington, VA, USA.
- Irfan M, Nadeem M, Syed Q. 2014. One-factor-at-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. J. Radiat. Res. Appl. Sci. 7: 317-326. https://doi.org/10.1016/j.jrras.2014.04.004
- Nguyen TH, Sunwoo IY, Ra CH, Jeong GT, Kim SK. 2019. Acetone, butanol, and ethanol production from the green seaweed Enteromorpha intestinalis via the separate hydrolysis and fermentation. Bioprocess Biosyst. Eng. 42: 415-424. https://doi.org/10.1007/s00449-018-2045-6
- Sukwong P, Sunwoo IY, Lee MJ, Ra CH, Jeong GT, Kim SK. 2019. Application of the severity factor and HMF removal of red macroalgae Gracilaria verrucosa to production of bioethanol by Pichia stipitis and Kluyveromyces marxianus with adaptive evolution. Appl. Biochem. Biotechnol. 187: 1312-1327. https://doi.org/10.1007/s12010-018-2888-y
- Jiang LQ, Fang Z, Guo F, Yang LB. 2012. Production of 2,3-butanediol from acid hydrolysates of Jatropha hulls with Klebsiella oxytoca. Bioresour. Technol. 107: 405-410. https://doi.org/10.1016/j.biortech.2011.12.083
- Li M, Li W, Lu Y, Jameel H, Chang H, Ma L. 2017. High conversion of glucose to 5-hydroxymethylfurfural using hydrochloric acid as a catalyst and sodium chloride as a promoter in a water/γ-valerolactone system. RSC Adv. 7: 14330-14336. https://doi.org/10.1039/C7RA00701A
- Jeong TS, Choi CH, Lee JP, Oh KK. 2012. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii. Bioresour. Technol. 116: 435-440. https://doi.org/10.1016/j.biortech.2012.03.104
- Jeong GT, Ra CH, Hong YK, Kim JK, Kong IS, Kim SK, et al. 2015. Conversion of red-alage Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess Biosyst. Eng. 38: 207-217. https://doi.org/10.1007/s00449-014-1259-5
- Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM. 2011. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem. 13: 754-793. https://doi.org/10.1039/c0gc00401d
- Saha B, Abu-Omar MM. 2014. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem. 16: 24-38. https://doi.org/10.1039/C3GC41324A
- Kougioumtzis MA, Marianou A, Atsonios K, Michailof C, Nikolopoulos N, Koukouzas N, et al. 2018. Production of 5-HMF from cellulosic biomass: Experimental results and integrated process simulation. Waste Biomass Valor. 9: 2433-2445. https://doi.org/10.1007/s12649-018-0267-0
- Amamou S, Sambusiti C, Monlau F, Dubreucq E, Barakat A. 2018. Mechano-enzymatic deconstruction with a new enzymatic cocktail to enhance enzymatic hydrolysis and bioethanol fermentation of two macroalgae species. Molecules 23: 174-184. https://doi.org/10.3390/molecules23010174
- Ra CH, Nguyen TH, Jeong GT, Kim SK. 2016. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production. Bioresour. Technol. 209: 66-72. https://doi.org/10.1016/j.biortech.2016.02.106
- Ra CH, Jeong GT, Kim SK. 2016. Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control. Bioprocess Biosyst. Eng. 40: 403-411.
- Ng CY, Jung MY, Lee JW, Oh MK. 2012. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb. Cell Fact. 11: 68-81. https://doi.org/10.1186/1475-2859-11-68
Cited by
- Levulinic Acid Production from Macroalgae: Production and Promising Potential in Industry vol.13, pp.24, 2020, https://doi.org/10.3390/su132413919