Browse > Article
http://dx.doi.org/10.22895/jse.2020.0102

Flexible biosensors based on field-effect transistors and multi-electrode arrays: a review  

Kim, Ju-Hwan (School of Electrical and Computer Engineering, University of Seoul)
Park, Je-Won (School of Electrical and Computer Engineering, University of Seoul)
Han, Dong-Jun (School of Electrical and Computer Engineering, University of Seoul)
Park, Dong-Wook (School of Electrical and Computer Engineering, University of Seoul)
Publication Information
Journal of Semiconductor Engineering / v.1, no.3, 2020 , pp. 88-98 More about this Journal
Abstract
As biosensors are widely used in the medical field, flexible devices compatible with live animals have aroused great interest. Especially, significant research has been carried out to develop implantable or skin-attachable devices for real-time bio-signal sensing. From the device point of view, various biosensor types such as field-effect transistors (FETs) and multi-electrode arrays (MEAs) have been reported as diverse sensing strategies. In particular, the flexible FETs and MEAs allow semiconductor engineering to expand its application, which had been impossible with stiff devices and materials. This review summarizes the state-of-the-art research on flexible FET and MEA biosensors focusing on their materials, structures, sensing targets, and methods.
Keywords
Bio-transistor; brain-machine interface; field-effect transistor; flexible biosensor; multi-electrode array; neural probe; semiconductor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Etemadi, M. Mohammed, P. T. Thorbergsson, J. Ekstrand, A. Friberg, M. Granmo, L. M. E. Pettersson and J. Schouenborg. (2016, May). Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers. Plos One. 11(5), Available: ARTN e0155109. 10.1371/journal.pone.0155109   DOI
2 Y. C. Zhang, N. Zheng, Y. Cao, F. L. Wang, P. Wang, Y. J. Ma, B. W. Lu, G. H. Hou, Z. Z. Fang, Z. W. Liang, M. K. Yue, Y. Li, Y. Chen, J. Fu, J. Wu, T. Xie and X. Feng. (2019, Apr). Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Science Advances. 5(4), Available: ARTN eaaw1066. 10.1126/sciadv.aaw1066   DOI
3 K. I. Song, S. E. Park, S. Lee, H. Kim, S. H. Lee and I. Youn. (2018, Oct). Compact Optical Nerve Cuff Electrode for Simultaneous Neural Activity Monitoring and Optogenetic Stimulation of Peripheral Nerves. Scientific Reports. 8, Available: ARTN 15630. 10.1038/s41598-018-33695-2   DOI
4 C. L. Kolarcik, S. D. Luebben, S. A. Sapp, J. Hanner, N. Snyder, T. D. Y. Kozai, E. Chang, J. A. Nabity, S. T. Nabity, C. F. Lagenaur and X. T. Cui. (2015, Elastomeric and soft conducting microwires for implantable neural interfaces. Soft Matter. 11(24), pp. 4847-4861. Available: 10.1039/c5sm00174a   DOI
5 F. Ejserholm, A. Vastesson, T. Haraldsson, W. van der Wijngaart, J. Schouenborg, L. Wallman and M. Bengtsson. (2013, A polymer neural probe with tunable flexibility. 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER). Available: 10.1109/NER.2013.6696028.   DOI
6 H. Shin, Y. Son, U. Chae, J. Kim, N. Choi, H. J. Lee, J. Woo, Y. Cho, S. H. Yang, C. J. Lee and I. J. Cho. (2019, Aug). Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo. Nature Communications. 10(pp. Available: ARTN 3777 10.1038/s41467-019-11628-5   DOI
7 J. T. W. Kuo, B. J. Kim, S. A. Hara, C. D. Lee, C. A. Gutierrez, T. Q. Hoang and E. Meng. (2013,Nov). Novel flexible Parylene neural probe with 3D sheath structure for enhancing tissue integration. Lab on a Chip. 13(4), pp. 554-561. Available: 10.1039/c2lc40935f   DOI
8 B. Fan, C. A. Rusinek, C. H. Thompson, M. Setien, Y. Guo, R. Rechenberg, Y. Gong, A. J. Weber, M. F. Becker, E. Purcell and W. Li. (2020, Jul). Flexible, diamond-based microelectrodes fabricated using the diamond growth side for neural sensing. Microsystems & Nanoengineering. 6(1), Available: ARTN 42 10.1038/s41378-020-0155-1   DOI
9 S. Tamaki, T. Kuki, T. Matsunaga, H. Mushiake, Y. Furusawa and Y. Haga. (2015, Aug). Flexible Tube-Shaped Neural Probe for Recording and Optical Stimulation of Neurons at Arbitrary Depths. Sensors and Materials. 27(7), pp. 507-523. Available: 10.18494/SAM.2015.1095   DOI
10 Z. L. Xiang, J. Q. Liu and C. Lee. (2016, May). A flexible three-dimensional electrode mesh: An enabling technology for wireless brain-computer interface prostheses. Microsystems & Nanoengineering. 2, Available: ARTN 16012. 10.1038/micronano.2016.12   DOI
11 C. Lu, S. Park, T. J. Richner, A. Derry, I. Brown, C. Hou, S. Y. Rao, J. Kang, C. T. Moritz, Y. Fink and P. Anikeeva. (2017, Mar). Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Science Advances. 3(3), Available: ARTN e1600955. 10.1126/sciadv.1600955   DOI
12 H. Toda, T. Suzuki, H. Sawahata, K. Majima, Y. Kamitani and I. Hasegawa. (2011, Jan). Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex. Neuroimage. 54(1), pp. 203-212. Available: 10.1016/j.neuroimage.2010.08.003   DOI
13 A. Oliveira, J. S. Ordonez, D. A. Vajari, M. Eickenscheidt and T. Stieglitz. (2016,Jun). Laser-induced carbon pyrolysis of electrodes for neural interface systems. European Journal of Translational Myology. 26(3), pp. 181-186. Available: 10.4081/ejtm.2016.6062   DOI
14 X. L. Wei, L. Luan, Z. T. Zhao, X. Li, H. L. Zhu, O. Potnis and C. Xie. (2018, Jun). Nanofabricated Ultraflexible Electrode Arrays for High-Density Intracortical Recording. Advanced Science. 5(6), Available: ARTN 1700625. 10.1002/advs.201700625   DOI
15 Y. C. Lu, H. M. Lyu, A. G. Richardson, T. H. Lucas and D. Kuzum. (2016, Sep). Flexible Neural Electrode Array Basedon Porous Graphene for Cortical Microstimulation and Sensing. Scientific Reports. 6, Available: ARTN 33526. 10.1038/srep33526   DOI
16 M. Ryu, J. H. Yang, Y. Ahn, M. Sim, K. H. Lee, K. Kim, T. Lee, S. J. Yoo, S. Y. Kim, C. Moon, M. Je, J. W. Choi, Y. Lee and J. E. Jang. (2017, Mar). Enhancement of Interface Characteristics of Neural Probe Based on Graphene, ZnO Nanowires, and Conducting Polymer PEDOT. Acs Applied Materials & Interfaces. 9(12), pp. 10577-10586. Available: 10.1021/acsami.7b02975   DOI
17 P. Mehrotra. (2016, Jan). Biosensors and their applications-a review. J Oral Biol Craniofac Res 6(2), pp. 153-159 Available: 10.1016/j.jobcr.2015.12.002   DOI
18 T. Matsuo and M. Esashi. (1981), Methods of ISFET fabrication. Sensors and Actuators. 1, pp. 77-96. Available: 10.1016/0250-6874(81)80006-6   DOI
19 W.-S. Kao, Y.-W. Hung and C.-H. Lin. (2020, Aug). SolidState Sensor Chip Produced with Single Laser Engraving for Urine Acidity and Total Dissolved Ion Detections. ECS Journal of Solid State Science and Technology. 9(11), Available: 10.1149/2162-8777/abac92   DOI
20 T. Wadhera, D. Kakkar, G. Wadhwa and B. Raj. (2019, Oct). Recent advances and progress in development of the field effect transistor biosensor: A review. Journal of Electronic Materials. 48(12), pp. 7635-7646. Available: 10.1007/s11664-019-07705-6   DOI
21 J. T. Smith, S. S. Shah, M. Goryll, J. R. Stowell and D. R. Allee. (2013, Dec). Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer. IEEE Sensors Journal. 14(4), pp. 937-938. Available: 10.1109/JSEN.2013.2295057   DOI
22 D. Lee and T. Cui. (2010, June). Low-cost, transparent, and flexible single-walled carbon nanotube nanocomposite based ion-sensitive field-effect transistors for pH/glucose sensing. Biosensors and Bioelectronics. 25(10), pp. 2259-2264. Available: 10.1016/j.bios.2010.03.003   DOI
23 I.-K. Lee, K. H. Lee, S. Lee and W.-J. Cho. (2014, Dec). Microwave annealing effect for highly reliable biosensor: dual-gate ion-sensitive field-effect transistor using amorphous InGaZnO thin-film transistor. ACS applied materials & interfaces. 6(24), pp. 22680-22686. Available: 10.1021/am506805a   DOI
24 M. Medina-Sanchez, C. Martinez-Domingo, E. Ramon and A. Merkoci. (2014,July). An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing. Advanced Functional Materials. 24(40), pp. 6291-6302. Available: 10.1002/adfm.201401180   DOI
25 S. Veeralingam and S. Badhulika. (2020, Oct). Surface functionalized β-Bi2O3 nanofibers based flexible, fieldeffect transistor-biosensor (BioFET) for rapid, label-free detection of serotonin in biological fluids. Sensors and Actuators B: Chemical. 321, Available: 10.1016/j.snb.2020.128540   DOI
26 H. Li, Y. Zhu, M. S. Islam, M. A. Rahman, K. B. Walsh and G. Koley. (2017,Dec). Graphene field effect transistors for highly sensitive and selective detection of K+ ions. Sensors and Actuators B: Chemical. 253, pp. 759-765. Available: doi.org/10.1016/j.snb.2017.06.129   DOI
27 S. Shah, J. Smith, J. Stowell and J. B. Christen. (2015,Dec). Biosensing platform on a flexible substrate. Sensors and Actuators B: Chemical. 210, pp. 197-203. Available: 10.1016/j.snb.2014.12.075   DOI
28 Q. Liu, Y. Liu, F. Wu, X. Cao, Z. Li, M. Alharbi, A. N. Abbas, M. R. Amer and C. Zhou. (2018,Jan). Highly sensitive and wearable In2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids. ACS nano. 12(2), pp. 1170-1178. Available: 10.1021/acsnano.7b06823   DOI
29 M. Kaisti. (2017,Dec). Detection principles of biological and chemical FET sensors. Biosensors and Bioelectronics. 98, pp. 437-448. Available: 10.1016/j.bios.2017.07.010   DOI
30 S. Nakata, T. Arie, S. Akita and K. Takei. (2017,Mar). Wearable, flexible, and multifunctional healthcare device with an ISFET chemical sensor for simultaneous sweat pH and skin temperature monitoring. ACS sensors. 2(3), pp. 443-448. Available: 10.1021/acssensors.7b00047   DOI
31 N. Liu, L. Q. Zhu, P. Feng, C. J. Wan, Y. H. Liu, Y. Shi and Q. Wan. (2015,Dec). Flexible sensory platform based on oxide-based neuromorphic transistors. Scientific reports. 5, 18082. Available: 10.1038/srep18082   DOI
32 H.-J. Jang and W.-J. Cho. (2014,June). Performance enhancement of capacitive-coupling dual-gate ion-sensitive field-effect transistor in ultra-thin-body. Scientific reports. 4(pp. 5284. Available: 10.1038/srep05284   DOI
33 M. Y. Mulla, E. Tuccori, M. Magliulo, G. Lattanzi, G. Palazzo, K. Persaud and L. Torsi. (2015,Jan). Capacitancemodulated transistor detects odorant binding protein chiral interactions. Nature communications. 6(1), pp. 1-9. Available: 10.1038/ncomms7010   DOI
34 D. Khodagholy, T. Doublet, P. Quilichini, M. Gurfinkel, P. Leleux, A. Ghestem, E. Ismailova, T. Herve, S. Sanaur and C. Bernard. (2013,Mar). In vivo recordings of brain activity using organic transistors. Nature communications. 4(1), pp. 1-7. Available: 10.1038/ncomms2573   DOI
35 R. D. Munje, S. Muthukumar, A. P. Selvam and S. Prasad. (2015,Sep). Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics. Scientific reports. 5, 14586. Available: doi.org/10.1038/srep14586   DOI
36 L. Xiang, Z. Wang, Z. Liu, S. E. Weigum, Q. Yu and M. Y. Chen. (2016,Dec). Inkjet-printed flexible biosensor based on graphene field effect transistor. IEEE Sensors Journal. 16(23), pp. 8359-8364. Available: 10.1109/JSEN.2016.2608719.   DOI
37 O. S. Kwon, S. J. Park, J.-Y. Hong, A.-R. Han, J. S. Lee, J. S. Lee, J. H. Oh and J. Jang. (2012,Jan). Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. Acs Nano. 6(2), pp. 1486-1493. Available: 10.1021/nn204395n   DOI
38 T. Sekitani, T. Yokota, K. Kuribara, M. Kaltenbrunner, T. Fukushima, Y. Inoue, M. Sekino, T. Isoyama, Y. Abe, H. Onodera and T. Someya. (2016, Apr). Ultraflexible organic amplifier with biocompatible gel electrodes. Nature Communications. 7, Available: ARTN 11425. 10.1038/ncomms11425   DOI
39 Q. Z. Liu, Y. H. Liu, F. Q. Wu, X. Cao, Z. Li, M. Alharbi, A. N. Abbas, M. R. Amer and C. W. Zhou. (2018, Feb). Highly Sensitive and Wearable In2O3 Nanoribbon Transistor Biosensors with Integrated On-Chip Gate for Glucose Monitoring in Body Fluids. Acs Nano. 12(2), pp. 1170-1178. Available: 10.1021/acsnano.7b06823   DOI
40 V. D. Bhatt, S. Joshi, M. Becherer and P. Lugli. (2017, May). Flexible, Low-Cost Sensor Based on Electrolyte Gated Carbon Nanotube Field Effect Transistor for OrganoPhosphate Detection. Sensors. 17(5), Available: ARTN 1147. 10.3390/s17051147   DOI
41 J. Viventi, D. H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y. S. Kim, A. E. Avrin, V. R. Tiruvadi, S. W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. L. Xiao, Y. G. Huang, D. Contreras, J. A. Rogers and B. Litt. (2011, Dec). Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature Neuroscience. 14(12), pp. 1599-1605. Available: 10.1038/nn.2973   DOI
42 C. F. Lourenco, A. Ledo, J. Laranjinha, G. A. Gerhardt and R. M. Barbosa. (2016, Dec). Microelectrode array biosensor for high-resolution measurements of extracellular glucose in the brain. Sensors and Actuators B-Chemical. 237, pp. 298-307. Available: 10.1016/j.snb.2016.06.083   DOI
43 M. David-Pur, L. Bareket-Keren, G. Beit-Yaakov, D. RazPrag and Y. Hanein. (2014, Feb). All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation. Biomedical Microdevices. 16(1), pp. 43-53. Available: 10.1007/s10544-013-9804-6   DOI
44 B. J. Choi, J. H. Kim, W. J. Yang, D. J. Han, J. Park and D. W. Park. (2020, Oct). Parylene-Based Flexible Microelectrode Arrays for the Electrical Recording of Muscles and the Effect of Electrode Size. Applied SciencesBasel. 10(20), Available: ARTN 7364. 10.3390/app10207364   DOI
45 D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Q. Ma and J. C. Williams. (2014, Oct). Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nature Communications. 5, Available: ARTN 5258. 10.1038/ncomms6258   DOI
46 D. C. Rodger, A. J. Fong, L. Wen, H. Ameri, A. K. Ahuja, C. Gutierrez, I. Lavrov, Z. Hui, P. R. Menon, E. Meng, J. W. Burdick, R. R. Roy, V. R. Edgerton, J. D. Weiland, M. S. Humayun and Y. C. Tai. (2008, Jun). Flexible parylenebased multielectrode array technology for high-density neural stimulation and recording. Sensors and Actuators BChemical. 132(2), pp. 449-460. Available: 10.1016/j.snb.2007.10.069   DOI
47 K. W. Meacham, R. J. Giuly, L. Guo, S. Hochman and S. P. DeWeerth. (2008, Apr). A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomedical Microdevices. 10(2), pp. 259-269. Available: 10.1007/s10544-007-9132-9   DOI
48 B. G. Lapatki, J. P. van Dijk, I. E. Jonas, M. J. Zwarts and D. F. Stegeman. (2004, Jan). A thin, flexible multielectrode grid for high-density surface EMG. Journal of Applied Physiology. 96(1), pp. 327-336. Available: 10.1152/japplphysiol.00521.2003   DOI
49 K. J. Xie, S. M. Zhang, S. R. Dong, S. J. Li, C. N. Yu, K. D. Xu, W. K. Chen, W. Guo, J. K. Luo and Z. H. Wu. (2017, Aug). Portable wireless electrocorticography system with a flexible microelectrodes array for epilepsy treatment. Scientific Reports. 7, Available: ARTN 7808. 10.1038/s41598-017-07823-3   DOI
50 T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. H. Li, J. Z. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. F. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. G. Huang, F. G. Omenetto, J. A. Rogers and M. R. Bruchas. (2013, Apr). Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics. Science. 340(6129), pp. 211-216. Available: 10.1126/science.1232437   DOI
51 M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne and D. Ricci. (2017, Jan). Highly Stable Glassy Carbon Interfaces for Long-Term Neural Stimulation and Low-Noise Recording of Brain Activity. Scientific Reports. 7, Available: ARTN 40332. 10.1038/srep40332   DOI
52 D. W. Park, J. P. Ness, S. K. Brodnick, C. Esquibel, J. Novello, F. Atry, D. H. Baek, H. Kim, J. Bong, K. I. Swanson, A. J. Suminski, K. J. Otto, R. Pashaie, J. C. Williams and Z. Q. Ma. (2018, Jan). Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice. Acs Nano. 12(1), pp. 148-157. Available: 10.1021/acsnano.7b04321   DOI
53 C. B. Liu, Y. Zhao, X. Cai, Y. Xie, T. Y. Wang, D. L. Cheng, L. Z. Li, R. F. Li, Y. P. Deng, H. Ding, G. Q. Lv, G. L. Zhao, L. Liu, G. S. Zou, M. X. Feng, Q. A. Sun, L. Yin and X. Sheng. (2020, Aug). A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. Microsystems & Nanoengineering. 6(1), Available: ARTN 64. 10.1038/s41378-020-0176-9   DOI