DOI QR코드

DOI QR Code

Effect of Waterlogging on Growth and Morphological Characteristics of Roots of Maize Inbred Lines

담수 처리에 따른 옥수수 자식 계통의 지상부와 뿌리의 생육 및 형태적 특성

  • 이지현 (국립식량과학원 중부작물부) ;
  • 신명나 (국립식량과학원 중부작물부) ;
  • 정건호 (농촌진흥청 대변인실) ;
  • 김정태 (국립식량과학원 기획조정과) ;
  • 차정은 (국립식량과학원 중부작물부) ;
  • 심강보 (국립식량과학원 중부작물부) ;
  • 이재은 (국립식량과학원 중부작물부) ;
  • 손범영 (국립식량과학원 철원출장소) ;
  • 김상곤 (경남한방항노화연구원) ;
  • 구본일 (국립식량과학원 중부작물부) ;
  • 이석기 (국립식량과학원 중부작물부) ;
  • 전원태 (국립식량과학원 중부작물부)
  • Received : 2020.10.16
  • Accepted : 2020.11.14
  • Published : 2020.12.31

Abstract

This study was conducted to investigate the growth characteristics of the shoot and roots and to analyse the morphological characteristics of roots of waterlogging resistant and susceptible maize inbred lines. Six maize inbred lines were treated with waterlogging for 10 days at V3, and the degree of leaf senescence was evaluated for waterlogging resistance. As a result of waterlogging resistance evaluation, KS85 was the most damaged inbred line with 3.33 senescence leaves and 5.54 degree, and KS141 was the least damaged inbred line with 1.33 senescence leaves and 3 degree. At 20 days after treatment, the effect of waterlogging stress on the shoot dry matter accumulation of KS85 and KS141 were decreased by 86.1% and 77.0%, respectively, compared to the control. Similarly, root dry matter accumulation of KS85 and KS141 were decreased by 77.6% and 65.0%. As a result of SEM photographs of the nodal roots of the two maize inbred lines, the thickness of cortex of KS141 was thicker than that of KS85, and the distortion of the cortex was observed in KS85 at 20 days after waterlogging. It was concluded that the thickness of cortex was related to maize waterlogging resistance.

본 연구는 옥수수 습해 저항성 계통과 감수성 계통의 지상부와 지하부 제형질과 뿌리의 형태적 특성을 알아보고자 수행되었다. 6개의 국내 자식 계통을 유묘기(V3)에 10일간 담수처리 한 후 엽노화 정도로 내습성을 평가 한 결과 KS85은 황화엽수 3.33개, 노화정도 5.54로 가장 피해가 커 습해 감수성을 보였으며, KS141은 황화엽수 1.33개, 노화정도 3으로 가장 피해가 적어 습해 저항성을 보였다. KS85와 KS141을 담수 처리 후 20일에 조사한 결과 KS85와 K141의 지상부 건물중은 무처리구 대비 각각 86.1%, 77.0%가 감소되었고, 지하부 건물중은 KS85와 K141이 무처리구 대비 각각 77.6%, 65.0% 감소하여 습해 저항성인 KS141이 감수성인 KS85에 비해 건물중 감소량이 적었다. 두 계통의 지하부 nodal root의 SEM 촬영 결과 피층의 두께가 KS141이 KS85보다 더 현저히 두꺼웠으며 담수 처리 후 KS85는 KS141에 비해 피층의 뒤틀림이 심하여 피층의 두께가 내습성과 관련이 있는 것으로 사료되어진다.

Keywords

References

  1. Bailey-Serres, J., Fukao, T., Gibbs, D.J. and Holdsworth, M.J. 2012. Making sense of low oxygen sensing. Trends in Plant Science. 17:129-138. https://doi.org/10.1016/j.tplants.2011.12.004
  2. Bailey-Serres, J., Lee, S.C. and Brinton, E. 2012. Waterproofing crops: Effective flooding survival strategies. Plant Physiol. 160:1698-1790. https://doi.org/10.1104/pp.112.208173
  3. Bird, R.M.K. 2000. A remarkable new teosinte from Nicaragua: Growth and treatment of progeny. Maize Genetics Cooperation Newsletter. 74:58-59.
  4. Cho, Y.S., Son, B.Y., Yoon, Y.H. and Ku, B.C. 2009. Development of technology and variety selection for paddy field adaptive disaster resistance silage corns. National Institute of Crop Science(NICS) Research Report. pp. 426-433. (in Korean)
  5. Dennis, E.S., Dolferus, R., Ellis, M., Rahman, M., Wu, Y., Hoeren, F.U., Grover, A., Ismond, K.P., Good, A.G. and Peacock, W.J. 2000. Molecular strategies for improving waterlogging tolerance in plants. Journal of Experimental Botany. 51:89-97. https://doi.org/10.1093/jexbot/51.342.89
  6. Drew, M.C., He, C.J. and Morgan, P.W. 2000. Programmed cell death and aerenchyma formation in roots. Trends in Plant Science. 5:123-127. https://doi.org/10.1016/S1360-1385(00)01570-3
  7. Edmeades, G.O., Bolanos, J., Elings, A., Ribaut, J.M., Banziger, M. and Westgate, M.E. 2000. The role and regulation of the anthesis‐silking interval in maize. Physiology and modeling kerner set in Maize (Vol. 29). Crop Science Society of America, USA. pp. 43-45.
  8. Evans, R.O., Skaggs, R.W. and Sneed, R.E. 1990. Normalized crop susceptibility for corn and soybean to excess water stress. Transactions. American Society of Agricultural Engineers. 33:1153-1161. https://doi.org/10.13031/2013.31452
  9. Go, Y.S., Kim, J.T., Bae, H.H., Son, B.Y., Yi, G., Ha, J.Y., Kim, S.L. and Baek, S.B. 2020. Analysis of growth response and gene expression by waterlogging stress on B73 maize. Korea Society of Crop Science. 65:104-112.
  10. Gunawardena, A., Perce, D.M., Jackson, M.B., Hawes, C.R. and Evans, D.E. 2001. Characterization of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.). Planta. 212:205-214. https://doi.org/10.1007/s004250000381
  11. Herrero, M.P. and Johnson, R.R. 1981. Drought stress and its effects on maize reproductive systems. Crop Science. 21:105-110. https://doi.org/10.2135/cropsci1981.0011183X002100010029x
  12. Ji, H.C., Lee, J.K., Kim, K.Y., Yoon, S.H., Lim, Y.C., Kwon, O.D. and Lee, H.B. 2009. Evaluation of agronomic characteristics, forage production and quality of corn hybrids for silage at paddy field in southern region of Korea. Journal of the Korean Society of Grassland Science. 29:13-18. https://doi.org/10.5333/KGFS.2009.29.1.013
  13. Jung, G.H., Moon, J.K., Seo, J.H. and Seo, M.J. 2015. Studies on the mechanism of excess water stress for stable production of upland crops in paddy field. National Institute of Crop Science(NICS) Research Report. pp. 416-454. (in Korean)
  14. Kim, M.J., Choi, G.J., Yook, W.B., Lim, Y.C., Yoon, S.H., Kim, J.G., Park, H.S. and Seo, S. 2007. Effects of seeding method on the winter survival, dry matter yield and nutrient value of Italian ryegrass in paddy field. Journal of the Korean Society of Grassland Science. 27:269-274. https://doi.org/10.5333/KGFS.2007.27.4.269
  15. Kim, W.H., Shin, J.S., Lim, Y.C., Seo, S., Kim, K.Y. and Lee, J.K. 2005. Study on the promising double cropping system of summer and winter forage crop in paddy field. Journal of the Korean Society of Grassland Science. 25:233-238. https://doi.org/10.5333/KGFS.2005.25.4.233
  16. Lee, K.B. 2016. Plant morphology (3rd ed.). Life Science Press, Seoul. pp. 204-211. (in Korean)
  17. Liu, Y.Z., Tang, B., Zheng, Y.L., Ma, K.J., Xu, S.Z. and Qiu, F.Z. 2010. Screening methods for waterlogging tolerance at maize (Zea mays L.) seedling stage. Agricultural Sciences in China. 9:362-369. https://doi.org/10.1016/S1671-2927(09)60105-X
  18. Mano, Y. and Omori, F. 2013. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte in maize. Annals of Botany. 122:1125-1139. https://doi.org/10.1093/aob/mct160
  19. Mano, Y., Omori, F., Takamizo, T., Kindiger B., Bird, R.M.K. and Loaisiga, C.H. 2006. Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings. Plant and Soil. 281:269-279. https://doi.org/10.1007/s11104-005-4268-y
  20. Mano, Y., Omori, F., Takamizo, T., Kindiger, B., Bird, R.M.K., Loaisiga, C.H. and Takahashi, H. 2007. QTL mapping of root aerenchyma formation in seedlings of a maize×rare teosinte "Zea nicaraguensis" cross. Plant and Soil. 295:103-113. https://doi.org/10.1007/s11104-007-9266-9
  21. Mukhtar, S., Kanwar, R.S. and Baker, J.L. 1990. Corn grown as affected by excess soil water. Transactions of the American Society of Agricultural and Biosystems Engineers. 33:437-442. https://doi.org/10.13031/2013.31348
  22. RDA. 2015. Corn. Rural Development Administration, Jeonju. pp. 102-114. (in Korean)
  23. Ren, B., Zhang, J., Dong, S., Liu, P. and Zhao, B. 2016. Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PLoS ONE. 11(9):e0161424. https://doi.org/10.1371/journal.pone.0161424
  24. Sass, J.E. 1951. Botanical microtechnique. Ames, Iowa State College Press. pp. 12-15.
  25. Shin, S., Jung, G.H., Kim, S.G., Son, B.Y., Kim, S.G., Lee, J.S., Kim, J.T., Bae, H.H, Kwon, Y., Shim, K.B., Lee, J.E., Baek, S.B. and Jeon, W.T. 2017. Effect of prolonged waterlogging on growth and yield of characteristics of maize (Zea mays L.) at early vegetative stage. Journal of the Korean Society of Grassland and Forage Science. 37:271-276. https://doi.org/10.5333/KGFS.2017.37.4.271
  26. Shin, S., Kim, S.G., Jung, G.H., Kim, C.G., Son, B.Y., Kim, J.T., Kim, S.G., Yang, W., Kwon, Y., Shim, K.B. and Woo, M.O. 2016. Evaluation of waterlogging tolerance with the degree of foliar senescence at early vegetative stage of maize (Zea Mays L.). Journal of Crop Science and Biotechnology. 19:393-400. https://doi.org/10.1007/s12892-016-0097-1
  27. Yamauchi, T., Abe, F., Tsutsumi, N. and Nakazono, M. 2019. Root cortex provides a venue for gas-space formation and is essential for plant adaptation to waterlogging. Frontiers in Plant Science. 259:1-12.
  28. Zaidi, P.H., Rafiquea, S., Raia, P.K., Singha, N.N. and Srinivasan, G. 2004. Tolerance to excess moisture in maize (Zea mays L.): Susceptible crop stages and identification of tolerant genotypes. Field Crops Research. 90:189-202. https://doi.org/10.1016/j.fcr.2004.03.002