DOI QR코드

DOI QR Code

n-Hexane 및 Ethyl Acetate를 이용한 Willamette 품종 라즈베리추출물의 페놀 화합물 함량 및 항산화 효능 연구

Studies on the Phenolic Compound Content and Antioxidant Efficacy of Rubus idaeus (Raspberry) Cultivar 'Willamette' Fruit Extract Using n-Hexane and Ethyl Acetate

  • 박규근 (그린코스 주식회사 기업부설연구소) ;
  • 윤여필 (그린코스 주식회사 기업부설연구소)
  • 투고 : 2020.08.13
  • 심사 : 2020.12.11
  • 발행 : 2020.12.30

초록

본 연구는 willamette 품종의 동결건조라즈베리분말, n-hexane 및 ethyl acetate를 이용하여 라즈베리 추출물(Rubus idaeus (Raspberry) fruit extract, RIFE)을 제조한 다음 페놀 화합물 함량, 철 이온 환원능력, 그리고 라디칼 소거 능력의 측정을 수행하였다. Willamette 품종 라즈베리추출물은 10% 농도까지 세포독성을 보이지 않았다. 해당 농도로 실험을 수행한 결과 총 페놀 화합물 함량은 375.3 ppm, 총 플라보노이드 함량은 43.46 ppm이 포함된 것을 확인하였고, ferric reducing antioxidant power (FRAP) reagent를 이용한 철 이온 환원능력은 FeSO4 0.532 mM에 해당하는 환원능력을 가졌음을 확인하였다. 이를 바탕으로 항산화 소재의 대표적 원료인 L-ascorbic acid와 비교하는 라디칼 소거능 실험을 실시하였다. 그 결과 1,1-diphenyl- 2-picrylhydrazyl (DPPH) 라디칼 소거능력은 94.5 ± 0.7%를 나타냈고, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) 라디칼 소거능은 99.4 ± 2.82%를 나타냈으며, nitric oxide (NO) 라디칼소거능은 88.5 ± 0.4%를 나타냈다. 표준인 L-ascorbic acid 용액과 비교할 때 25 - 50 ppm 사이의 효능을 지닌 DPPH 라디칼 소거능 / 100 ppm에 근접한 효능을 지닌 ABTS 라디칼 소거능 / 1,000 ppm 이상의 효능을 지닌 NO 라디칼 소거능을 가졌음을 확인하였다. 이러한 결과들은 willamette 품종 라즈베리추출물이 항산화 활성을 가지는 효과적인 화장품 소재로 적용 가능하다는 것을 시사한다.

In this study, Rubus idaeus (Raspberry) cultivar 'Willamette' fruit extract(RIFE) was prepared from the freeze-dried raspberry powder, n-hexane and ethyl acetate, and then the phenolic compound content, ferric reducing ability, and radical scavenging ability were measured. The raspberry cultivar 'willamette', 'polka', and 'polana' compound fruit extract did not show cytotoxicity up to the concentration of 10%. As a result of conducting an experiment at the concentration, it was confirmed that the total phenolic compound content was 375.3 ppm, and the total flavonoid content was 43.46 ppm, and the ferric reducing ability by ferric reducing antioxidant power (FRAP) reagent was equivalent to FeSO4 0.532 mM. It was confirmed that 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability was 94.5 ± 0.7%, and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging ability was 99.4 ± 2.82%, and the nitric oxide (NO) radical scavenging activity was 88.5 ± 0.4%. When compared with the L-ascorbic acid 'standard' solution, DPPH radical scavenging ability was between 25 - 50 ppm / ABTS radical scavenging ability was close to 100 ppm / NO radical scavenging ability was more than 1,000 ppm. These results suggest that the raspberry cultivar 'willamette' fruit extract could be applied as an effective cosmetic material with antioxidant activity.

키워드

참고문헌

  1. H. Y. Chung and Y. K. Kim, Age-associated alteration in the hapatic superoxide generation and antioxidant activities in the senescence-accelerated mice, Yakhak Hoeji, 36(5), 460 (1992).
  2. E. Carvalho, P. Franceschi, A. Feller, L. Palmieri, R. Wehrens, and S. Martens, A targeted metabolomics approach to understand differences in flavonoid biosynthesis in red and yellow raspberries, Plant Physiol. Biochem., 72(11), 80 (2013).
  3. U. Szymanowska, B. Baraniak, and A. Bogucka-Kocka, Antioxidant, anti-inflammatory, and postulated cytotoxic activity of phenolic acid and anthocyanin-rich fractions from polana raspberry (Rubus idaeus L.) fruit and juice - in vitro study, Molecules, 23(7), 4 (2018).
  4. S. P. Mazur, A. Nes, A. Wold, S. F. Remb erg, and K. Aaby, Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons, Food Chem., 160(19), 237 (2014).
  5. H. H. Kang, Ph. D. Dissertation, Gyeongsang National Univ., Jinju, Korea (2009).
  6. H. J. Chang, E. H. Choi, and H. S. Chun, Quantitative structure-activity relationship (QSAR) of antioxidative anthocyanidins and their glycosides, Food Sci. Biotechnol., 17(3), 501 (2008)
  7. R. A. Moyer, K. E. Hummer, C. E. Finn, B. Frei, and R. E. Wrolstad, Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes, J. Agric. Food Chem., 50(3), 519 (2002) https://doi.org/10.1021/jf011062r
  8. A. Kostecka-Gugala, I. Ledwozyw-Smolen, J. Augustynowicz, G. Wyzgolik, M. Kruczek, and P. Kaszycki, Antioxidant properties of fruits of raspberry and blackberry grown in central Europe, Open Chem., 13(1), 1313 (2015)
  9. V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventos, Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, Meth. Enzymol., 299(2), 152 (1999) https://doi.org/10.1016/S0076-6879(99)99017-1
  10. J. L. Lamaison, and A. Carnet, Content of main flavonoids in flowers and leaves of Crataegus monogyna Jacq. and Crataegus laevigata (Poiret) DC. in relation with development stages, Pharm. Acta Helv., 25(1), 12 (1991)
  11. I. F. F. Benzie and J. J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay, Anal. Biochem., 239(1), 70 (1996). https://doi.org/10.1006/abio.1996.0292
  12. M. S. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 181(4617), 1199 (1958). https://doi.org/10.1038/1811199a0
  13. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med., 26(9-10), 1231 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3
  14. H. S. Song and K. Y. Moon, In vitro antioxidant activity profiles of B-glucans isolated from yeast Saccharomyces cerevisiae and mutant Saccharomyces cerevisiae IS2, Food Sci. Biotechnol., 15(3), 437 (2006).
  15. J. I. Hong, H. J. Kim, and J. Y. Kim, Factors affecting reactivity of various phenolic compounds with the Folin-Ciocalteu reagent, Korean J. Food & Nutr., 40(2), 205 (2011). https://doi.org/10.3746/jkfn.2011.40.2.205