DOI QR코드

DOI QR Code

Soil Physical and Chemical Properties of Kaolinite Opencast Mines and Adjacent Red Pine Forests in Sancheong-gun

산청군 고령토(백토) 노천 광산 채굴지와 인접 소나무 임분의 토양 물리·화학적 성질

  • Kim, Kyung Tae (Gyeongsangnam-do Forest Environmental Research Institute) ;
  • Baek, Gyeongwon (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Choi, Byeonggil (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Ha, Jiseok (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Kim, Choonsig (Department of Forest Resources, Gyeongnam National University of Science and Technology)
  • 김경태 (경상남도 산림환경연구원) ;
  • 백경원 (경남과학기술대학교 산림자원학과) ;
  • 최병길 (경남과학기술대학교 산림자원학과) ;
  • 하지석 (경남과학기술대학교 산림자원학과) ;
  • 김춘식 (경남과학기술대학교 산림자원학과)
  • Received : 2020.08.31
  • Accepted : 2020.10.13
  • Published : 2020.12.31

Abstract

Soil properties in opencast mines are a key factor in reclamation (revegetation) of mining areas. In this study we determined the soil physical and chemical properties of kaolinite tailings, reclaimed areas, and adjacent natural red pine (Pinus densiflora S. et Z.) forests in kaolinite opencast mines in Sancheong-gun, Gyeongsangnam-do. Six sites were chosen for collection of soil samples to determine soil physical and chemical properties at a soil depth of 10 cm. Soil bulk density was significantly higher (P < 0.05) in the kaolinite tailings (1.51 g·cm-3) than in the reclaimed areas (1.19 g·cm-3) and red pine forests (0.93 g·cm-3), whereas air phase in the kaolinite tailings (14.2%) was significantly lower than in the red pine forests (32.6%). Clay content in the red pine forests was significantly higher than in the reclaimed areas (18.7%) or kaolinite tailings (14.8%), whereas soil structural stability index was significantly lower in the reclaimed areas (1.61%) and kaolinite tailings (0.87%) than in the red pine forests (7.75%). Soil pH was significantly higher in the kaolinite tailings (pH 6.68) and reclaimed areas (pH 6.27) than in the red pine forests (pH 5.31). Soil organic carbon and total nitrogen were significantly higher in the red pine forests (C: 36.03 mg·g-1; N: 2.08 mg·g-1) than in the reclaimed areas (C: 5.00 mg·g-1; N: 0.31 mg·g-1) than in the kaolinite tailings (C: 2.12 mg·g-1; N: 0.07 mg g-1). The amount of available phosphorus was not significantly different among the three treatments. The concentration of exchangeable potassium was significantly lower in the kaolinite tailings (0.08 cmolc·kg-1) than in the reclaimed areas (0.21 cmolc·kg-1) and red pine forests (0.30 cmolc·kg-1). These results indicate that, because of high soil bulk density and low soil organic carbon, total nitrogen, available phosphorus, and exchangeable potassium in kaolinite tailings and reclaimed mining areas, soil nutrient management is needed in order to reclaim the vegetation in these type of areas.

노천 광산 채굴지의 토양 물리·화학적 성질은 광산지 식생 복원의 가장 중요한 요인이다. 본 연구는 경상남도 산청군 고령토 광산의 고령토 폐석지와 식생 복원지 및 인접한 소나무 임분의 토양 성질을 비교하기 위하여 수행하였다. 고령토 채굴이 진행되고 있는 6개 지역을 선정하고 고령토 폐석지, 식생 복원지, 소나무 임분의 토양 10 cm 깊이에 물리·화학적 성질을 조사하였다. 토양 용적밀도는 고령토 폐석지가 1.51 g·cm-3로 식생 복원지 1.19 g·cm-3나 소나무 임분 0.93 g·cm-3에 비해 유의적으로(P < 0.05) 높게 나타났으며, 기상은 고령토 폐석지가 14.2%로 소나무 임분 32.6%에 비해 유의적으로 낮았다. 점토함량은 소나무 임분이 33.6%로서 고령토 폐석지 14.8%나 식생 복원지 18.7%에 비해 유의적으로 높았다. 토양구조 안정지수는 고령토 폐석지가 0.87%, 식생 복원지가 1.61%로 소나무 임분 7.75%에 비해 유의적으로 낮았다. 토양 pH는 고령토 폐석지 pH 6.68, 식생 복원지 pH 6.27로 소나무 임분 pH 5.31에 비해 유의적으로 높았다. 그러나 토양 유기탄소 농도는 고령토 폐석지 2.12 mg·g-1, 식생 복원지 5.00 mg·g-1, 소나무 임분 36.03 mg·g-1, 전질소 농도는 고령토 폐석지 0.07 mg·g-1, 식생 복원지 0.31 mg·g-1, 소나무 임분 2.08 mg·g-1로 고령토 폐석지와 식생 복원지는 소나무 임분에 비해 유의적으로 낮은 값을 보였다. 토양 내 유효 인 농도는 고령토 폐석지, 식생 복원지, 소나무 임분 사이에 유의적인 차이가 없었다. 토양 포타슘 농도는 고령토 폐석지 0.08 cmolc·kg-1과 식생 복원지 0.21 cmolc·kg-1로 소나무 임분 0.30 cmolc·kg-1에 비해 유의적으로 낮았다. 본 연구 결과에 따르면 고령토 노천 채굴지의 고령토 폐석지나 식생 복원지는 토양 용적밀도가 높고, 토양 유기탄소, 전질소, 유효 인, 교환성 포타슘 농도가 낮았으며 식생 복원지의 경우 토양 비옥도로 향상할 수 있는 관리 방안이 필요한 것으로 나타났다.

Keywords

Acknowledgement

이 논문은 2020~2021년도 경남과학기술대학교 대학회계 연구비 지원에 의하여 연구되었음.

References

  1. Binkley, D. and Fisher, R.F. 2020. Ecology and Management of Forest Soils. 5th ed. John Wiley & Sons Ltd. UK. pp.
  2. Bradshaw, A. 1997. Restoration of mined lands-using natural processes. Ecological Engineering 8(4): 255-269. https://doi.org/10.1016/S0925-8574(97)00022-0
  3. Buta, M., Blaga, G., Paulette, L., Pacurar, I., Rosca, S., Borsai, O., Grecu, F., Sinziana, P.E. and Negrusier, C. 2019. Soil reclamation of abandoned mine lands by revegetation in Northwestern part of Transylvania: A 40-year retrospective study. Sustainability 11(12): 3393. https://doi.org/10.3390/su11123393
  4. Cooke, J.A. and Johnson, M.S. 2002. Ecological restoration of land with particular reference to the mining of metals and industrial minerals: A review of theory and practice. Environmental Reviews 10(1): 41-71. https://doi.org/10.1139/a01-014
  5. Emerson, P., Skousen, J. and Ziemkiewicz, P. 2009. Survival and growth of hardwoods in brown versus gray sandstone on a surface mine in West Virginia. Journal of Environmental Quality 38: 1821-1829. https://doi.org/10.2134/jeq2008.0479
  6. Feng, Y., Wang, J., Bai, Z. and Reading, L. 2019. Effects of surface coal mining and land reclamation on soil properties: A review. Earth-Science Reviews 191: 12-25. https://doi.org/10.1016/j.earscirev.2019.02.015
  7. Hogberg, J.I., Pinno, B.D. and MacKenzie, M.D. 2020. Evaluating foliar nutrient concentration as an indicator of soil nutrients in reclaimed and natural forests in Alberta, Canada. International Journal of Mining, Reclamation and Environment 34(2): 75-87. https://doi.org/10.1080/17480930.2018.1516330
  8. Jeong, G.Y. and Kim, S.J. 1994. Genesis of kaolin in the Sancheong district, Korea: Mineralogical and textural study. Journal of the Geological Society of Korea 30(3): 262-283.
  9. Jeong, J., Kim, C., Goo, K., Lee, C., Won, H. and Byun, J. 2003. Physico-chemical properties of Korean forest soils by parent rocks. Journal of Korean Forestry Society 92(3): 254-262.
  10. Kalra, Y.P. and Maynard, D.G. 1991. Methods Manual for Forest Soil and Plant Analysis. Forestry Canada, Northwest Region, Northern Forestry Centre, Edmonton, Alberta. Information Report NOR-X-319E. pp. 116.
  11. Korea Forest Research Institute. 2014. Methods Manual for Soil and Plant Analysis: Soil physical property. Research Note 571. pp. 179.
  12. Korea Institute of Geoscience and Mineral Resources. 2020. 2019 yearbook of minerals statistics. pp. 213.
  13. Korea Meteorological Administration. 2017. 2017 Annual Climatological Reports. pp. 323.
  14. Lane, M., Hanley, M.E., Lunt, P., Knight, M.E., Braungardt, C.B. and Ellis, J.S. 2020. Chronosequence of former kaolinite open cast mines suggests active intervention is required for the restoration of Atlantic heathland. Restoration Ecology 28(3): 661-667. https://doi.org/10.1111/rec.12983
  15. Lipiec, J. and Hatano, R. 2003. Quantification of compaction effects on soil physical properties and crop growth. Geoderma 116: 107-136. https://doi.org/10.1016/S0016-7061(03)00097-1
  16. Maiti, S.K. 2013. Ecorestoration of the Coalmine Degraded Lands. Spinger, London, England. pp. 379.
  17. Moon, D.H., Han, M.S., Cho, H.G., Kim, M.N. and Kim, J.H. 2016. Applicability as a Dancheong pigment raw materials of Korean low grade kaolin. Journal of the Mineralogical Society of Korea 29(4): 179-190. https://doi.org/10.9727/jmsk.2016.29.4.179
  18. National Institute of Forest Science. 2015. Case Study of Vegetation Restoration in Abandoned Mines and Quarry. Research Note 614. pp. 92.
  19. Pieri, C.J.M.G. 2012. Fertility of soils: A Future for Farming in West African Savanna. Vol. 10. Springer, Berlin, Germany. pp. 348.
  20. Pouyat, R.V., Yesilonis, I.D., Russell-Anelli, J. and Neerchal, N.K. 2007. Soil chemical and physical properties that differentiate urban land-use and cover types. Soil Science Society of America Journal 71: 1010-1019. https://doi.org/10.2136/sssaj2006.0164
  21. SAS Institute Inc. 2003. SAS/STAT Statistical software. version 9.1 SAS publishing Cary, NC.
  22. Showalter, J.M., Burger, J.A., Zipper, C.E. and Galbraith, J.M. 2005. Influence of physical, chemical, and biological mine soil properties on white oak seedling growth. National Meeting of the American Society of Mining and Reclamation. June 19-23, 2005. pp. 1029-1041.
  23. Shrestha, R.K. and Lal, R. 2011. Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma 161(3-4): 168-176. https://doi.org/10.1016/j.geoderma.2010.12.015
  24. Ter Braak, C.J.F. and Smilauer, P. 2018. Canoco Reference Manual and User's Guide: Software for Ordination (Version 5.10). Microcomputer Power, Ithaca, NY, USA, pp. 536.
  25. Wang, J., Wang, H., Cao, Y., Bai, Z. and Qin, Q. 2016. Effects of soil and topogrphic factors on vegetation restoration in opencast coal mine dumps located in a loess area. Scientific Reports 6: 22058. https://doi.org/10.1038/srep22058
  26. Weil, R.R. and Brady, N.C. 2017. The Nature and properties of soils. Pearson. Essex, England. pp. 1104.
  27. Zhang, O., Cui, Y., Zhang, Y., Jia, J., Wang, X. and Zhang, X. 2016. Changes in soil physical and chemical properties following surfce mining and reclamation. Soil Science Society of America Journal 80(6): 1476-1485. https://doi.org/10.2136/sssaj2016.06.0167
  28. Zipper, C.E., Burger, J.A., Barton, C.D. and Skousen, J.G. 2013. Rebuilding soils on mined land for native forests in Appalachia. Soil Science Society of America Journal 77(2): 337-349. https://doi.org/10.2136/sssaj2012.0335