• 제목/요약/키워드: reclaimed soils

검색결과 213건 처리시간 0.025초

자연강우에 의한 간척지토양의 이화학적 특성변화 (Changes of physico-chemical properties in the reclaimed tidal land soils by precipitation)

  • 김재영;손재권;구자웅;최진규
    • 농촌계획
    • /
    • 제8권1호
    • /
    • pp.3-14
    • /
    • 2002
  • Changes of chemical properties by times of the reclaimed tidal land soils and soil surface water, underground infiltration water with precipitation-runoff on natural meteological condition in the unripened tidal reclaimed paddy fields were investigated. This study was carried out to use environment-friendly farm land in the reclaimed tidal lands. The soils used in this study were saline-alkaline soils with the high $Na^+$ and $Mg^{++}$ content. As the results of investigation outflow loading of nutriments through outflow water in the unripened tidal reclaimed paddy fields by precipitation during the survey period, nutriments equivalent to T-N $1{\sim}2\;kg\;10a^{ -1}$ and T-P $0.01{\sim}0.02\;kg\;10a^{-1}$ from in the unripened tidal lands were discharged. Besides, the results of comparison losses of cation through outflow water showed $Na^+>\;K^+>\;Mg^{++}\;>\;Ca^{++}$, and the highest appeared water discharge of $Na^+$. In case of saemangeum reclaimed tidal land soils water discharge of cations showed $Ca^{++}$ 1.3 kg $10a^{-1}$, $Mg^{++}$ 1.6 kg $10a^{-1}$, $Na^+$ 17.7 kg $10a^{-1}$, and $K^+$ 3.2 kg $10a^{-1}$ respectively. On the other hand, in case of koheung reclaimed tidal lands soils water discharge of cations showed $Ca^{++}$ 18.1 kg $10a^{-1}$, $Mg^{++}$ 31.2 kg $10a^{-1}$, $Na^+$ 320.8 kg $10a^{-1}$ and $K^+$ 51.2 kg $10a^{-1}$ respectively.

Effect of Soil Water Contents on Urea Hydrolysis and Nitrification in a Newly Reclaimed Tidal Soils

  • Park, Mi-Suk;Kim, Hye-Jin;Chung, Doug-Young
    • 한국토양비료학회지
    • /
    • 제44권1호
    • /
    • pp.48-52
    • /
    • 2011
  • The effect of soil water content on the transformation potential of N compounds derived from hydrolysis of urea applied in a reclaimed tidal soils which was saline-sodic was observed to evaluate nitrification rates of urea. Soil samples were collected from Moonpo series at the newly reclaimed area in Saemanguem. For the transformation potential of N compounds from urea (46% N), newly reclaimed tidal soils (RS) were amended with urea at the rates of 0, 10, and 20 kg $10a^{-1}$. With leachate obtained from the incubated RS in a leaching tube at $25^{\circ}C$, urea hydrolysis and nitrification were measured for a total of 30days. The cumulative amounts of $NO_3{^-}$-N in each of the four soils treated with urea was linear with time of incubation. Results showed that increase in pH occurred with increasing application rate of urea and volumetric water content due to hydrolysis of urea. The total N in the RS was decreased with incubation time, indicating that rates of urea hydrolysis was influenced by soil moisture conditions. Also, the cumulative amount of nitrate in RS gradually increased with increase in time of incubation.

간척지 토양환경 조건별 토양내 질소 동태와 영향 요소 (Fate of Nitrogen Influenced by Circumstances of a Reclaimed Tidal Soils)

  • 한상균;김혜진;송진아;정덕영
    • 한국토양비료학회지
    • /
    • 제44권5호
    • /
    • pp.745-751
    • /
    • 2011
  • In most agricultural soils, ammonium ($NH_4^+$) from fertilizer is quickly converted to nitrate ($NO_3^-$) by the process of nitrification which is crucial to the efficiency of N fertilizers and their impact on the environment. However, nitrification studies have been studied extensively in agricultural soils, not in a newly reclaimed tidal soil which show saline-sodic and high pH. Therefore, understanding the fate of nitrogen species transformed from urea introduced into reclaimed tidal soil is important for nutrient management and environmental quality. This paper reviewed studies regarding to transformation and fate of nitrogen sources such as urea under the circumstances of a reclaimed tidal soils located in a western coastal area.

새만금 간척지토양의 벼생육과정중 전기전도도 분석 (Analysis of Electrical Conductivity during the Growing Period in Saemangum Recaliamed Tidal Lands)

  • 손재권;최진규;구자웅;송재도;김영주
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.79-82
    • /
    • 2003
  • This study was performed in order to analyze the changes of electrical conductivity during the growing period in Saemangum reclaimed tidal lands soils. According to USDA Salinity Laboratory classification system of salt affected soils, the reclaimed tidal land soils used in this study were saline-sodic soils. As the results obtained from analying the changes of electrical conductivity(EC) during the growing period in reclaimed tidal land soils, EC of irrigation water and soils were no difference among the fertilization quanity, fertilization method and fertilization times.

  • PDF

간척지 토양의 제염과정중 수리전도도의 변화 (Changes of Hydraulic Conductivity During Desalmization of Reclaimed Tidelands)

  • 구자웅;은종호
    • 한국농공학회지
    • /
    • 제30권4호
    • /
    • pp.85-93
    • /
    • 1988
  • This laboratory study was carried out in order to produce fundamental data for analyzing salt movement and desalinization effects, using samples of silt loam soil collected in Gyehwado and Daeho reclaimed tidelans, and samples of silty clay loam soil collected in Kimie tideland. Desalinization experiments with gypsum treatment were performed to analyze changes of the hydraulicc conductivity with changes of the soil property and the salt concentration during the desalinization of reclaimed tideland soils by leaching through the subsufface drainage, and correlations between factors infl uencing the reclamation of salt affected soils were analyzed by the statistical method. The results were summarized as follows: 1. The reclaimed tideland soils used in this study were saline-sodic soils with the high exchangeable sodium percentage and the high electrical conductivity. 2. Changes of the hydraulic conductivity with the amount of leaching water and the leaching time elapsed were affected by the amount of gypsum except exchangeable sodium and clay contents. The regression equation between the depth of water leached per unit depth of soil (Dw / Ds : X) or the square root of the leaching time elapsed (T $^1$ $^2$ : X) and the relative hydraulic conductivity (HCr:Y) could be expressed in Y=a . bx. 3. The more exchangeable sodium and clay contents regardless of the amount of gypsum, the more the leaching time was required until a given volume of water was leached through the soil profile. The regression analysis showed that the relationship between the depth of water leached per unit depth of soil(Dw /Ds:X) and the square root of the leaching time elapsed(T$^1$$^2$ :Y) could be described by Y=a . Xb. 4. The hydraulic conductivity was influenced to a major degree by the salt concentration provided that the electrical conductivity was below 10 mmhos / cm during the desalinization of reclaimed tideland soils. The regression equation between the relative electrical conductivity ( ECr : X) and the relative hydraulic conductivity (HCr:Y) could be expressed in Y=a + b . X-$^1$. 5. In conclusion, the hydraulic conductivity, leaching requirements and the leaching time elapsed can be estimated when the salt concentration decreases to a certain level during the desalinization of reclaimed tidelands, and the results may be applied to the analysis of salt movement and desalinization effects.

  • PDF

석분슬러지 혼합토 매립사면에 대한 안정성 기준 제안 (Proposal of stability standards for slopes reclaimed by soils mixed with stone dust)

  • 송영석;김경수
    • 지질공학
    • /
    • 제17권3호
    • /
    • pp.425-434
    • /
    • 2007
  • 본 연구에서는 석분슬러지 혼합토를 복구토로 활용할 경우 조성되는 매립사면의 안정성 기준을 마련하였다. 이를 위하여 먼저 석분슬러지와 원지반토의 혼합비율을 5가지로 구분하고 각각에 대한 토질시험을 실시하였다. 실험결과 석분슬러지의 혼합비율이 감소할수록 전단강도 및 최대건조단위중량이 증가하는 경향을 나타내었다. 성토사면에 대한 국내외의 사면안전율 기준에 대한 조사를 토대로 석분슬러지 혼합토 매립사면의 사면안정등급을 불안정, 주의 및 안정의 3단계로 구분하였다. 석분슬러지 혼합토 매립사면에 대한 사면안정해석을 실시하여 안전한 사면높이, 사면경사 및 석분슬러지 혼합비율을 제안하였다. 매립사면에 대한 사면안정해석결과 석분슬러지 혼합토 성토사면의 사면높이를 10 m로 할 경우 사면경사는 1 : 1.8 이상 되도록 매립하여야 안정함을 알 수 있다. 그리고 사면높이를 15 m로 할 경우 석분슬러지 함유율이 50%이하로 하고 사면경사는 1 : 1.8 이상 되도록 매립하여야 안정함을 알 수 있다. 사면경사, 사면높이 및 석분슬러지 함유율이 동일한 조건일 경우 채석현장 내부의 절취암반에 접하여 매립된 사면과 평지에 성토하여 매립된 사면의 사면안정해석결과는 유사함을 알 수 있다. 이와 같은 석분슬러지 혼합토 매립사면의 안정성 기준은 채석현장에서 실무적으로 이용할 수 있을 것으로 판단된다.

간척초기답의 벼생육기간중 염분농도 분석 (Analysis of Salinity during the Growing Period in the Unripened Tidal Reclaimed Paddy Fields)

  • 손재권;구자웅;최진규
    • 농촌계획
    • /
    • 제6권2호
    • /
    • pp.3-11
    • /
    • 2000
  • The high salt concentration of reclaimed tidelands in the beginning of reclamation interferes with the growth of most crops. Although the crops are cultivated in the unripened tidal reclaimed paddy fields after desalinization to be arable, they we apt to be injured from salt by the resalinization through accumulated salts in the root zone during the growing period. In oder to make the reasonable irrigation plan in the unripened tidal reclaimed paddy fields, the preventive water requirements of resalinization as well as leaching requirements have to be included in irrigation water requirements. The critical salinity for the normal growth of crops should be determined to estimate the preventive water requirements of resalinization, and the changes of salinity in soil and water should be analyzed during the growing period, In this study, the growth tests of crops were conducted by soil textures and water management methods in the experimental field with lysimeters, using the samples of good drainage soils and poor drainage soils. And the changes of salinity in soil and water during the growing period, were analyzed to obtain the basic data for determining the critical salinity and making the estimation criteria of the preventive water requirements of resalinization. As the results obtained from analyzing the changes of salinity during the growing period in the unripened tidal reclaimed paddy fields, the exchanging interval of water for the prevention of resalinization was estimated to be within two weeks in good drainage soils and a week in poor drainage soils. And the total exchanging requirements of water for the prevention of resalinization during the growing period was estimated to be over 280mm in good drainage soils and 540mm in poor drainage soils.

  • PDF

폐기물 매립지 토양에서의 PCBs 분석법

  • 이정화;전치완;정영욱
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.199-201
    • /
    • 2005
  • This paper describes a simple procedure for the quantitative analysis of 7 PCBs (polychlorinated biphenyls) in soils on the waste reclaimed land, The procedure involved sample clean up using silicagel column, acetonitrile partition and sulfuric acid procedures. The instrumental technique is applied GC/PDD(gas chromatography/pulsed discharge detector) and GC/ECD(gas chromatography/electron capture detector). Concentration of $sub-{\mu}g/g$ level was attainable with 20g soils on the waste reclaimed land.

  • PDF

해안간척지 토양의 생물학적 토성개량에 관한 연구 (제 2 ) -간척지토양에 있어서 생물의 화에 대하여- (Biological improvement of reclaimed tidal land soil (II) -Changes of soil-microbial populations in reclaimed tidal land-)

  • 홍순우;하영칠;이광웅
    • 미생물학회지
    • /
    • 제6권4호
    • /
    • pp.131-140
    • /
    • 1968
  • The soil of the reclaimed tidal land, located in Chogi-ri, Is. Kanghwa, Korea was used in this experiment. The experimented soil samples were collected from 18 sites with its time elapsed after the shore-protection works, soil-depth and the vegetation of saline plants, and at each site samplings were conducted monthly from March through October, 1968, for the purposes of examining the changes of microbial populations for the microbes such as bacteria, actinomycetes and fungi, by using the dilution plate method. The numbers of the microbes in these soils generally showed lower levels comparing with those of other soils. The more time elapsed after the reclamation, the higher numbers of the microbes inhibited the soils. Higher populations were there in the surface soils than in the lower part of the area. The surface soils included comparatively better conditions in aeration and contents of organic matter than in the lower part, and this fact was. same as in general soils. However, not so was this in the case of March, April and October due to the higher soil temperatures in the lows. At the experimental sites where the halophytes such as Salicorniu were grown vigourously, the more densly the plants grew, the higher populations of actinomycetes and fungi were, but not in the case of bacterial population. This means, in this soil with dense Salicornia, it is difficult to obtain good-natured soils in short time without a higher population of bacteria. For the rapid utilization of the land soil, in this view of point, the methods increasing the number of bacteria in the soil are needed as well as the cultivation and harvesting Salicorniu which indicated in the privious paper(Hong, et al., 1969a). According to the results of this experiment, the changes of soil-microbial populations in the reclaimed tidal land soil containing high salinity depend deeply upon the interrelations of many environmental factors such as soil-salinity, soil-components and contents, concentration of organic matters, pH, aeration, and air and soil temperatures, as in the general soils.

  • PDF

Characterization of Kinetics of Urea Hydrolysis in A Newly Reclaimed Tidal Soils

  • Kim, Hye-Jin;Park, Mi-Suk;Woo, Hyun-Nyung;Kim, Gi-Rim;Chung, Doug-Young
    • 한국토양비료학회지
    • /
    • 제44권1호
    • /
    • pp.84-90
    • /
    • 2011
  • It is imperative to study the hydrolysis of urea in high saline-sodic condition of a newly reclaimed tidal land in order to overcome the problems associated with use of urea fertilizer. The methodology adopted in this study tried to get a convenient way of estimating rate for N transformation needed in N fate and transport studies by reviewing pH and salt contents which can affect the microbial activity which is closely related to the rate of urea hydrolysis. The hydrolysis of urea over time follows first-order kinetics and soil urease activity in reclaimed soils will be represented by Michaelis-Menten-type kinetics. However, high pH and less microorganisms may delay the hydrolysis of urea due to decrease in urease activity with increasing pH. Therefore, the rate of urea hydrolysis should adopt $V_{max}$ referring enzyme activity ($E_0$) accounting for urease concentration which is indicative for urea hydrolysis, especially in a high saline and sodic soils.