References
- J. Massey, "Optimum frame synchronization," IEEE transactions on communications, vol. 20, no. 2, pp. 115-119, Apr. 1972. https://doi.org/10.1109/TCOM.1972.1091127
- Z. Gao, C. Zhang, and Z. Wang, "Robust preamble design for synchronization, signaling transmission, and channel estimation," IEEE Transactions on Broadcasting, vol. 61, no. 1, pp. 98-104, Jan. 2015. https://doi.org/10.1109/TBC.2014.2376134
- E. Hosseini, and E. Perrins, "Timing, carrier, and frame synchronization of burst-mode CPM," IEEE Transactions on communications, vol. 61, no. 12, pp. 5125-5138, Dec. 2013. https://doi.org/10.1109/TCOMM.2013.111613.130667
- M. Chiani, "Noncoherent frame synchronization," IEEE Transactions on Communications, vol. 58, no. 5, pp. 1536-1545, May 2010. https://doi.org/10.1109/TCOMM.2010.05.090091
- K. S. Ok, I. W. Kang, Y. M. Kim, J. H. Seo, H. M. Kim, and H. N. Kim, "Frame Synchronization Method for Distributed MIMO Terrestrial Broadcasting Systems," The Journal of Korean Institute of Communications and Information Sciences, vol. 41, no. 4, pp. 424-432, Apr. 2016. https://doi.org/10.7840/kics.2016.41.4.424
- D. R. Pauluzzi, and N. C. Beaulieu, "A comparison of SNR estimation techniques for the AWGN channel," IEEE Transactions on communications, vol. 48, no. 10, pp. 1681-1691, Oct. 2000. https://doi.org/10.1109/26.871393
- E. -S. Lee and E. -R. Jeong, "Frame synchronization using convolutional neural network," in Proceeding of Summer Conference of The Institute of Electronics and Information Engineers, Korea, pp. 449-450, 2019.
- Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, "Gradient-based learning applied to document recognition," in Proceeding of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998. https://doi.org/10.1109/5.726791
- Y. J. Cha, W. R. Choi, O. Buyukozturk, "Deep Learning Based Crack Damage Detection Using Convolutional Neural Networks," Computer-Aided Civil and Infrastructure Engineering, vol. 32, no. 5, pp. 361-378, May 2017. https://doi.org/10.1111/mice.12263
- P. Lakhani, B. Sundaram, "Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks," Radiology, vol. 284, no. 2, pp. 574-582, Apr. 2017. https://doi.org/10.1148/radiol.2017162326
- M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, S. Mougiakakou, "Lung pattern classification for interstitial lung diseases using a deep convolutional neural network," IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1207-1216, Feb. 2016. https://doi.org/10.1109/TMI.2016.2535865
- S. H. Park, T. J. Jeon, S. H. Kim, S. Y. Lee, J. W. Kim, "Deep learning based symbol recognition for the visually impaired," Journal of Korea Institute of Information, Electronics, and Communication Technology, vol. 9, no. 3, pp. 249-256, Jun. 2016. https://doi.org/10.17661/jkiiect.2016.9.3.249
- J. Joung, S. Jung, S. Chung, E. -R. Jeong, "CNN-based Tx-Rx distance estimation for UWB system localization," Electronics Letters, vol. 55, no. 17, pp. 938-940, Aug. 2019. https://doi.org/10.1049/el.2019.1084