DOI QR코드

DOI QR Code

UWB 시스템에서 실내 측위를 위한 순환 신경망 기반 거리 추정

Recurrent Neural Network Based Distance Estimation for Indoor Localization in UWB Systems

  • Jung, Tae-Yun (Department of Mobile Convergence and Engineering, Hanbat National University) ;
  • Jeong, Eui-Rim (Department of Information and Communication Engineering, Hanbat National University)
  • 투고 : 2020.01.13
  • 심사 : 2020.02.19
  • 발행 : 2020.04.30

초록

본 논문에서는 초광대역 (Ultra-wideband, UWB) 시스템에서 실내 위치 측위를 위한 새로운 거리 추정 기법을 제안한다. 제안하는 기법은 딥러닝 기법 중 하나인 순환 신경망 (RNN)을 기반으로 한다. 순환신경망은 시계열 신호를 처리하는데 유용한데 UWB 신호 역시 시계열 데이터로 볼 수 있기 때문에 순환신경망을 사용한다. 구체적으로, UWB 신호가 IEEE 802.15.4a 실내 채널모델을 통과하고 수신된 신호에서 순환신경망 회귀를 통해 송신기와 수신기 사이의 거리를 추정하도록 학습한다. 이렇게 학습된 순환신경망 모델의 성능은 새로운 수신신호를 이용하여 검증하며 기존의 임계값 기반의 거리 추정 기법과도 비교한다. 성능지표로는 제곱근 평균추정에러 (root mean square error, RMSE)를 사용한다. 컴퓨터 모의실험 결과에 따르면 제안하는 거리 추정 기법은 수신신호의 신호 대 잡음비 (signal to noise ratio, SNR) 및 송수신기 사이의 거리와 상관없이 기존 기법보다 항상 월등히 우수한 성능을 보인다.

This paper proposes a new distance estimation technique for indoor localization in ultra wideband (UWB) systems. The proposed technique is based on recurrent neural network (RNN), one of the deep learning methods. The RNN is known to be useful to deal with time series data, and since UWB signals can be seen as a time series data, RNN is employed in this paper. Specifically, the transmitted UWB signal passes through IEEE802.15.4a indoor channel model, and from the received signal, the RNN regressor is trained to estimate the distance from the transmitter to the receiver. To verify the performance of the trained RNN regressor, new received UWB signals are used and the conventional threshold based technique is also compared. For the performance measure, root mean square error (RMSE) is assessed. According to the computer simulation results, the proposed distance estimator is always much better than the conventional technique in all signal-to-noise ratios and distances between the transmitter and the receiver.

키워드

참고문헌

  1. B. Yulianto, R. Layona, "An implementation of location based serviec (LBS) for community tracking. ComTech: Computer, Mathematics and Engineering Applications, vol. 8, no. 2, pp.69-75, Mar. 2017. https://doi.org/10.21512/comtech.v8i2.3749
  2. Z. Chen, H. Zou, H. Jiang, Q. Zhu, Y. Soh, L. Xie, "Fusioin of WiFi, smartphone sensors and landmarks using the kalman filter for indoor localization," Sensors, vol. 15, no. 1, pp. 715-732, Jan. 2015. https://doi.org/10.3390/s150100715
  3. H. -B Kil, H. Joo, C. Lee, and E. -R. Jeong, "A calibration technique for array antenna based GPS receivers," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 4, pp. 683-690, Apr. 2018. https://doi.org/10.6109/JKIICE.2018.22.4.683
  4. A. Yohan, NW. Lo, D. Winata, "An indoor positioningbased mobile payment system using Buletooth low energy technology," Sensors, vol. 18, no. 4, pp. 1-26, Mar. 2018. https://doi.org/10.1109/JSEN.2017.2772700
  5. A. Sunardy, N. Surantha, "Performance evaluation of indoor positioning algorithm using bluetooth low energy," in Proceeding of IEEE International Conference on Information Technology and Innovation, pp. 503-507, Oct. 2018.
  6. R. J. Fontana, "Recent system applications of short-pulse ultra-wideband (UWB) technology," IEEE Transactions on microwave theory and techniques, vol. 52, no. 9, pp. 2087-2104, Sept. 2004. https://doi.org/10.1109/TMTT.2004.834186
  7. G. M. Nam, T. Y. Jung, S. H. Jung, and E. R. Jeong, "Distance estimation using convolutional neural network in UWB systems," Journal of the Korea Institute of Information and Communication Engineering, vol. 23, no. 10, pp. 1290-1297, Oct. 2019.
  8. M. Ridolfi, S. Van de Velde, H. Steendam and E. De Poorter, "Analysis of the scalabillty of UWB indoor localization solutions for high user densities," Sensors, vol. 18, no. 6, pp. 1875, Jun. 2018. https://doi.org/10.3390/s18061875
  9. G. Oliva, S. Panzieri, F. Pascucci and R. Setola, "Sensor networks localization: extending trilateration via shadow edges," IEEE Transactions on Automatic Control, vol. 60, no. 10, pp. 2752-2755, Oct. 2015. https://doi.org/10.1109/TAC.2015.2404253
  10. I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press, ch. 10, pp. 363-400, 2016.
  11. A. F. Molisch, K. Balakrishnan, C. C. Chong, et al., "IEEE 802.15.4a channel model-final report," IEEE P802, vol. 15, no. 4, Nov. 2004.