DOI QR코드

DOI QR Code

Effect of V2O3 and CaO Concentrations on the Viscosity of 5-Component Petcoke Slag

V2O3와 CaO의 농도에 따른 5-성분계 석유코크스 슬래그의 점도 변화

  • Yang, Yoonjung (School of Materials Sciences and Chemical Engineering, Hongik University) ;
  • Oh, Myongsook S. (School of Materials Sciences and Chemical Engineering, Hongik University)
  • 양윤정 (홍익대학교 신소재화공시스템공학부 화학공학전공) ;
  • 오명숙 (홍익대학교 신소재화공시스템공학부 화학공학전공)
  • Received : 2020.08.18
  • Accepted : 2020.11.24
  • Published : 2020.12.10

Abstract

Petroleum coke (petcoke) is widely used, next to coal, as a gasification feedstock. In gasification processes, the viscosity of the ash and the formation of crystalline phases must be understood to ensure the continuous removal of slag. This study investigates the effect of CaO and V2O3 on petcoke slag viscosity. The viscosity of the molten slag was measured in the temperature range of 1100~1600 ℃ while varying the concentration of each component. The crystalline phases formed in a cooled slag were examined. The most slag samples tested in this study exhibited crystalline slag behavior. The increased CaO concentration resulted in a lower viscosity and a lower Tcv. The viscosity behavior changed from the glassy to crystalline slag and also showed a higher Tcv as the concentration of V2O3 increases. Most slag samples showed different crystalline phases from top to bottom. Anorthites and Ca-V phases were observed in the top and middle section, while the bottom section mainly showed V2O3 and anorthite. The vanadium in the ash forms Ca-V and V-Fe phases and also remains in molten slag. A low melting Ca-V phase can contribute to lowering the viscosity.

가스화 공정에서 원료 회분의 연속적인 제거를 위해 회분 성분에 따른 점도 거동뿐만 아니라, 온도가 낮아지면서 형성되는 결정체가 점도에 미치는 영향이 연구되어야 한다. 본 연구에서는 석유코크스 슬래그의 주성분 중 CaO와 V2O3 성분의 변화에 따른 슬래그의 점도 거동과 결정 분석을 통해 이 두 성분이 석유코크스 슬래그 점도에 미치는 영향을 조사하였다. 각각의 함유량을 변화시키면서 약 1600 ℃부터 약 1100 ℃까지 온도를 낮추며 점도를 측정하였고, 냉각된 시료의 결정상이 분석되었다. 측정된 시료는 대부분 결정형 점도 거동을 보여주었다. V2O3의 농도가 증가할수록 점도는 유리형에서 결정형으로 변화하였고, Tcv도 증가하는 경향을 보여주었다. CaO의 경우 농도가 증가할수록 낮은 점도와 낮은 Tcv를 보여주었다. 기준 시료를 포함한 모든 시료의 상, 중, 하부에서 다른 결정을 볼 수 있었다. 상, 중부에는 anorthite와 Ca-V 상이 관찰되었으면 하부에서는 주로 V2O3 결정과 anorthite이 관찰되었다. 슬래그의 바나듐은 Ca-V상, V-Fe, 용융 슬래그 상을 형성한다. 융점이 낮은 Ca-V 상은 점도를 낮추는데 기여하는 것으로 보인다.

Keywords

References

  1. R. W. Breault, Gasification processes old and New: A basic review of the major teechnologies, Energies, 3, 216-240 (2010). https://doi.org/10.3390/en3020216
  2. J. G. Speight, Gasification processes for syngas and hydrogen production, in Gasification for Synthetic Fuel Production, Fundamentals, Processes and Applications, 119-146, Woodhead Publishing Series in Energy (2015).
  3. Y. S. Yoon, Hydrogen production by gasification technologies, J. Energ. Eng., 13, 1-11 (2004).
  4. M. S. Oh, E. F. DePaz, D. D. Brooker, J. J. Brady, and T. Decker, Effect of crystalline phase formation on coal slag viscosity, Fuel Proc. Tech., 44, 191-199 (1995). https://doi.org/10.1016/0378-3820(95)00012-V
  5. I. S. Moon, C. B. Cho, and M. S. Oh, Viscosity of coal slags under gasification conditions, Energ. Eng., 11, 149-151 (2002).
  6. R. G. Narula, Challenges and Economics of Using Petroleum Coke for Power Generation, Bechtel Power Corporation, Gaithersburg, Maryland, USA (2004).
  7. D. Y. Jung, J. K. Wolfenbarger, D. D. Brooker, A. M. Robin, and J. S. Kassman, Deslagging gasifiers by controlled heat and derivatization, U. S. Patent 5338489 (1996).
  8. M. A. Duchesne, A. Y. Ilyushechkin, R. W. Hughes, D. Y. Lu, D. J. McCalden, A. Macchi, and E. J. Anthony, Flow behavior of slags from coal and petroleum coke blends, Fuel, 97, 321-328 (2012). https://doi.org/10.1016/j.fuel.2012.02.019
  9. Z. Wang, J. Bai, L. Kong, X. Wen, X. Li, Z. Bai, W. Li, and Y. Shi, Viscosity of coal ash slag containing vanadium and nickel, Fuel Proc. Technol., 136, 25-33 (2015) https://doi.org/10.1016/j.fuproc.2014.07.025
  10. J. Nakano, K.-S. Kwong, J. Bennett, T. Lam, L. Fernandez, P. Komolwit, and S. Sridhar, Phase equilibria in synthetic coal-petcoke slags (Al2O3-CaO-FeO-SiO2-V2O3) under simulated gasification conditions, Energ. Fuels, 25(7), 3298-3306 (2011). https://doi.org/10.1021/ef200633q
  11. J. Nakano, M. Duchesne, J. Bennett, K.-S. Kwong, and A. Nakano, Thermodynamic effects of calcium and iron oxides on crystal phase formation in synthetic gasifier slags containing from 0 to 27 wt.% V2O3, Fuel, 161, 364-375 (2015). https://doi.org/10.1016/j.fuel.2014.11.008
  12. B. Wang, W. Li, W. Yang, J. Nie, Y. Zhou, and L. Sun, Investigation of gasification atmosphere on nickel and vanadium transformation of petroleum coke by thermodynamic equilibrium calculation, Ind. Eng. Chem. Res., 58, 21208-21218 (2019). https://doi.org/10.1021/acs.iecr.9b03788
  13. S. Banik and S. V. Pisupati, Effects of pressure and CO concentration on vanadium, nickel and iron phase transformations for petcoke slag viscosity correlation development, Fuel, 253, 238-248 (2019). https://doi.org/10.1016/j.fuel.2019.05.007
  14. W. S. Park and M. S. Oh, Slagging of petroleum coke Ash using korean anthracites, J. Ind. & Eng. Chem., 14, 350 (2008). https://doi.org/10.1016/j.jiec.2007.12.004
  15. R. W. Bryers, Utilization of petroleum coke and petroleum blends as a means of steam raising coke/coal, Fuel Proc. Tech., 44, 121-141 (1995). https://doi.org/10.1016/0378-3820(94)00118-D
  16. R. E. Conn, Laboratory techniques for evaluating ash agglomeration potential in petroleum coke fired circulating fluidized bed combustors, Fuel Proc. Tech., 44, 95-103 (1995). https://doi.org/10.1016/0378-3820(95)00013-W
  17. M. L. Swanson and D. R. Hajicek, Proc. Int. Conf. Fluid. Bed Combust., 16, 496-507 (2001).
  18. J. Nakano, S. Sridhar, T, Moss, J. Bennett, and K.-S. Kwong, Crystallization of synthetic coal-Petroleum slag mixtures simulating those encountered in entrained Bed Slagging Gasifiers, Energ. Fuels, 23, 4723-4733 (2009). https://doi.org/10.1021/ef801064y
  19. J. Z. Li, Q. Xiong, J. Shan, and Y. T. Fang, Investigating a high vanadium petroleum coke ash fusibility and its modification, Fuel, 211, 767-774 (2018). https://doi.org/10.1016/j.fuel.2017.09.110
  20. Y. Kim and M. S. Oh, Effect of cooling rate and alumina dissolution on the determination of temperature of critical viscosity of molten slag, Fuel Proc. Tech., 91, 853-858 (2010) https://doi.org/10.1016/j.fuproc.2010.02.006
  21. A. Y. Ilyushechkin, M. A. Duchesne, S. S. Hla, A. Macci, and E. J. Anthony, Interactions of vanadium rich slags with crucible materials during viscosity measurements, J. Mater. Sci., 48, 1053-1066 (2013). https://doi.org/10.1007/s10853-012-6838-8