Browse > Article
http://dx.doi.org/10.14478/ace.2020.1066

Effect of V2O3 and CaO Concentrations on the Viscosity of 5-Component Petcoke Slag  

Yang, Yoonjung (School of Materials Sciences and Chemical Engineering, Hongik University)
Oh, Myongsook S. (School of Materials Sciences and Chemical Engineering, Hongik University)
Publication Information
Applied Chemistry for Engineering / v.31, no.6, 2020 , pp. 688-696 More about this Journal
Abstract
Petroleum coke (petcoke) is widely used, next to coal, as a gasification feedstock. In gasification processes, the viscosity of the ash and the formation of crystalline phases must be understood to ensure the continuous removal of slag. This study investigates the effect of CaO and V2O3 on petcoke slag viscosity. The viscosity of the molten slag was measured in the temperature range of 1100~1600 ℃ while varying the concentration of each component. The crystalline phases formed in a cooled slag were examined. The most slag samples tested in this study exhibited crystalline slag behavior. The increased CaO concentration resulted in a lower viscosity and a lower Tcv. The viscosity behavior changed from the glassy to crystalline slag and also showed a higher Tcv as the concentration of V2O3 increases. Most slag samples showed different crystalline phases from top to bottom. Anorthites and Ca-V phases were observed in the top and middle section, while the bottom section mainly showed V2O3 and anorthite. The vanadium in the ash forms Ca-V and V-Fe phases and also remains in molten slag. A low melting Ca-V phase can contribute to lowering the viscosity.
Keywords
Petcoke; Slag viscosity; Crystalline phases; $V_2O_3$; CaO;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Nakano, K.-S. Kwong, J. Bennett, T. Lam, L. Fernandez, P. Komolwit, and S. Sridhar, Phase equilibria in synthetic coal-petcoke slags (Al2O3-CaO-FeO-SiO2-V2O3) under simulated gasification conditions, Energ. Fuels, 25(7), 3298-3306 (2011).   DOI
2 J. Nakano, M. Duchesne, J. Bennett, K.-S. Kwong, and A. Nakano, Thermodynamic effects of calcium and iron oxides on crystal phase formation in synthetic gasifier slags containing from 0 to 27 wt.% V2O3, Fuel, 161, 364-375 (2015).   DOI
3 B. Wang, W. Li, W. Yang, J. Nie, Y. Zhou, and L. Sun, Investigation of gasification atmosphere on nickel and vanadium transformation of petroleum coke by thermodynamic equilibrium calculation, Ind. Eng. Chem. Res., 58, 21208-21218 (2019).   DOI
4 S. Banik and S. V. Pisupati, Effects of pressure and CO concentration on vanadium, nickel and iron phase transformations for petcoke slag viscosity correlation development, Fuel, 253, 238-248 (2019).   DOI
5 W. S. Park and M. S. Oh, Slagging of petroleum coke Ash using korean anthracites, J. Ind. & Eng. Chem., 14, 350 (2008).   DOI
6 R. W. Bryers, Utilization of petroleum coke and petroleum blends as a means of steam raising coke/coal, Fuel Proc. Tech., 44, 121-141 (1995).   DOI
7 R. E. Conn, Laboratory techniques for evaluating ash agglomeration potential in petroleum coke fired circulating fluidized bed combustors, Fuel Proc. Tech., 44, 95-103 (1995).   DOI
8 M. L. Swanson and D. R. Hajicek, Proc. Int. Conf. Fluid. Bed Combust., 16, 496-507 (2001).
9 J. Nakano, S. Sridhar, T, Moss, J. Bennett, and K.-S. Kwong, Crystallization of synthetic coal-Petroleum slag mixtures simulating those encountered in entrained Bed Slagging Gasifiers, Energ. Fuels, 23, 4723-4733 (2009).   DOI
10 J. Z. Li, Q. Xiong, J. Shan, and Y. T. Fang, Investigating a high vanadium petroleum coke ash fusibility and its modification, Fuel, 211, 767-774 (2018).   DOI
11 Y. Kim and M. S. Oh, Effect of cooling rate and alumina dissolution on the determination of temperature of critical viscosity of molten slag, Fuel Proc. Tech., 91, 853-858 (2010)   DOI
12 A. Y. Ilyushechkin, M. A. Duchesne, S. S. Hla, A. Macci, and E. J. Anthony, Interactions of vanadium rich slags with crucible materials during viscosity measurements, J. Mater. Sci., 48, 1053-1066 (2013).   DOI
13 M. S. Oh, E. F. DePaz, D. D. Brooker, J. J. Brady, and T. Decker, Effect of crystalline phase formation on coal slag viscosity, Fuel Proc. Tech., 44, 191-199 (1995).   DOI
14 R. W. Breault, Gasification processes old and New: A basic review of the major teechnologies, Energies, 3, 216-240 (2010).   DOI
15 J. G. Speight, Gasification processes for syngas and hydrogen production, in Gasification for Synthetic Fuel Production, Fundamentals, Processes and Applications, 119-146, Woodhead Publishing Series in Energy (2015).
16 Y. S. Yoon, Hydrogen production by gasification technologies, J. Energ. Eng., 13, 1-11 (2004).
17 I. S. Moon, C. B. Cho, and M. S. Oh, Viscosity of coal slags under gasification conditions, Energ. Eng., 11, 149-151 (2002).
18 M. A. Duchesne, A. Y. Ilyushechkin, R. W. Hughes, D. Y. Lu, D. J. McCalden, A. Macchi, and E. J. Anthony, Flow behavior of slags from coal and petroleum coke blends, Fuel, 97, 321-328 (2012).   DOI
19 R. G. Narula, Challenges and Economics of Using Petroleum Coke for Power Generation, Bechtel Power Corporation, Gaithersburg, Maryland, USA (2004).
20 D. Y. Jung, J. K. Wolfenbarger, D. D. Brooker, A. M. Robin, and J. S. Kassman, Deslagging gasifiers by controlled heat and derivatization, U. S. Patent 5338489 (1996).
21 Z. Wang, J. Bai, L. Kong, X. Wen, X. Li, Z. Bai, W. Li, and Y. Shi, Viscosity of coal ash slag containing vanadium and nickel, Fuel Proc. Technol., 136, 25-33 (2015)   DOI