DOI QR코드

DOI QR Code

Air Gasification Characteristics of Unused Woody Biomass in a Lab-scale Bubbling Fluidized Bed Gasifier

미이용 산림바이오매스 및 폐목재의 기포 유동층 Air 가스화 특성 연구

  • Han, Si Woo (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Seo, Myung Won (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Park, Sung Jin (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Son, Seong Hye (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Yoon, Sang Jun (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Ra, Ho Won (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Mun, Tae-Young (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Moon, Ji Hong (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Yoon, Sung Min (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Kim, Jae Ho (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Lee, Uen Do (Thermochemical Energy System R&D Group, Korea Institute of Industrial Technology) ;
  • Jeong, Su Hwa (Thermochemical Energy System R&D Group, Korea Institute of Industrial Technology) ;
  • Yang, Chang Won (Thermochemical Energy System R&D Group, Korea Institute of Industrial Technology) ;
  • Rhee, Young Woo (Graduate School of Energy Science and Technology, Chungnam National University)
  • 한시우 (한국에너지기술연구원 청정연료연구실) ;
  • 서명원 (한국에너지기술연구원 청정연료연구실) ;
  • 박성진 (한국에너지기술연구원 청정연료연구실) ;
  • 손성혜 (한국에너지기술연구원 청정연료연구실) ;
  • 윤상준 (한국에너지기술연구원 청정연료연구실) ;
  • 라호원 (한국에너지기술연구원 청정연료연구실) ;
  • 문태영 (한국에너지기술연구원 청정연료연구실) ;
  • 문지홍 (한국에너지기술연구원 청정연료연구실) ;
  • 윤성민 (한국에너지기술연구원 청정연료연구실) ;
  • 김재호 (한국에너지기술연구원 청정연료연구실) ;
  • 이은도 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 정수화 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 양창원 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 이영우 (충남대학교 에너지과학기술대학원)
  • Received : 2019.10.27
  • Accepted : 2019.11.13
  • Published : 2019.12.01

Abstract

In this study, the gasification characteristics of four types of unused woody biomass and one waste wood in a lab-scale bubbling fluidized bed gasifier (Diameter: 0.11 m, Height: 0.42 m) were investigated. Effect of equivalence ratio (ER) of 0.15-0.3 and gas velocity of $2.5-5U_0/U_{mf}$ are determined at the constant temperature of $800^{\circ}C$ and fuel feeding rate of 1 kg/h. The silica sand particle having an average particle size of $287{\mu}m$ and olivine with an average particle size of $500{\mu}m$ were used as the bed material, respectively. The average product gas composition of samples is as follows; $H_2$ 3-4 vol.%, CO 15-16 vol.%, $CH_4$ 4 vol.% and $CO_2$ 18-19 vol.% with a lower heating value (LHV) of $1193-1301kcal/Nm^3$ and higher heating value (HHV) of $1262-1377kcal/Nm^3$. In addition, it was found that olivine reduced most of C2 components and increased $H_2$ content compared to silica sand, resulting in cracking reaction of tar. The non-condensable tar decreases by 72% ($1.24{\rightarrow}0.35g/Nm^3$) and the condensable tar decreases by 27% ($4.4{\rightarrow}3.2g/Nm^3$).

본 연구에서는, Lab-scale 기포 유동층 가스화기(직경 : 0.11 m, 높이 : 0.42 m)에서 미이용 산림 바이오매스 4종과 폐목재 1종의 가스화 특성을 살펴보았다. 실험은 온도와 연료 주입량을 각각 $800^{\circ}C$, 1 kg/h로 고정하고, ER 0.15-0.3, 가스 유속 $2.5-5U_0/U_{mf}$으로 변화시키면서 진행했다. 층 물질로는 silica sand와 olivine을 사용하였다. 생성 가스의 조성은 NDIR 분석기와 GC를 통해 분석하였으며, 분석 결과 평균적으로 $H_2$ 3~4 vol%, CO 15~16 vol%, $CH_4$ 4 vol%, $CO_2$ 18~19 vol.%으로 미이용 산림바이오매스와 폐목재 모두 비슷한 조성을 보였으며, 생성 가스의 평균 저위발열량은 $1193{\sim}1301kcal/Nm^3$을, 고위발열량은 $1262{\sim}1377kcal/Nm^3$을 나타내었다. 또한, 타르 저감 효과를 알아보고자 층 물질로 olivine을 사용 시 silica sand에 비해 생성 가스 내 C2 이상 성분이 대부분 감소하였고, $H_2$ 함량이 증가하여 타르의 cracking 반응이 생겼음을 확인하였다. 비응축성 타르는 72% ($1.24{\rightarrow}0.35g/Nm^3$), 응축성 타르는 27% ($4.4{\rightarrow}3.2g/Nm^3$) 가량 감소하는 효과를 확인하였다.

Keywords

References

  1. Demirbas, A. and Arin, G., "An Overview of Biomass Pyrolysis," Energy Sources., 24, 471-482(2002). https://doi.org/10.1080/00908310252889979
  2. LeValley, T. L., Richard, A. R. and Fan, M., "The Progress in Water Gas Shift and Steam Reforming Hydrogen Production Technologies-a Review," International Journal of Hydrogen Energy, 39, 16983-17000(2014). https://doi.org/10.1016/j.ijhydene.2014.08.041
  3. Filippis, P. De., Borgianni, C., Paolucci, M. and Pochetti, F., "Gasification Process of Cuban Bagasse in a Two-stage Reactor," Biomass & Bioenergy, 27, 247-252(2004). https://doi.org/10.1016/j.biombioe.2003.11.009
  4. Ahmed, I. I. and Gupta, A. K., "Sugarcane Bagasse Gasification: Global Reaction Mechanism of Syngas Evolution," Appl Energy, 91, 75-81(2012). https://doi.org/10.1016/j.apenergy.2011.07.001
  5. International Energy Agency (IEA), "Technology Roadmap: Delivering Sustainable Bioenergy," Paris(2017).
  6. Saidur, R., Abdelaziz, E. A., Demirbas, A., Hossain, M. S. and Mekhilef, S., "A Review on Biomass as a Fuel for Boilers," Renewable Sustainable Energy Rev., 15, 2262-2289(2011). https://doi.org/10.1016/j.rser.2011.02.015
  7. Heidenreich, S. and Foscolo, P. U., "New Concepts in Biomass Gasification," Progress in Energy & Combustion Science, 46, 72-95(2015). https://doi.org/10.1016/j.pecs.2014.06.002
  8. http://www.forest.go.kr/kfsweb/kfs/idx/Index.do.
  9. http://www.law.go.kr/admRulInfoP.do?admRulSeq=2100000110450.
  10. Dincer, I., "Green Methods for Hydrogen Production," International Journal of Hydrogen Energy, 37, 1954-1971(2012). https://doi.org/10.1016/j.ijhydene.2011.03.173
  11. Das, D. and Veziroglu, T. N., "Hydrogen Production by Biological Processes: a Survey of Literature," International Journal of Hydrogen Energy, 26, 13-28(2001). https://doi.org/10.1016/S0360-3199(00)00058-6
  12. Kalinci, Y., Hepbasli, A. and Dincer, I., "Biomass-based Hydrogen Production: a Review and Analysis," International Journal of Hydrogen Energy, 34, 8799-8817(2009). https://doi.org/10.1016/j.ijhydene.2009.08.078
  13. Sheth, P. N. and Babu, B. V., "Experimental Studies on Producer Gas Generation from Wood Waste in a Downdraft Biomass Gasifier," Bioresource Technology, 100, 3127-3133(2009). https://doi.org/10.1016/j.biortech.2009.01.024
  14. Foust, T. D., Aden, A., Dutta, A. and Phillips, S., "An Economic and Environmental Comparison of a Biochemical and a Thermochemical Lignocellulosic Ethanol Conversion Processes," Cellulose, 16, 547-565(2009). https://doi.org/10.1007/s10570-009-9317-x
  15. Anukam, A., Mamphweli, S., Reddy, P., Meyer, E. and Okoh, O., "Pre-processing of Sugarcane Bagasse for Gasification in a Downdraft Biomass Gasifier System: A Comprehensive Review," Renewable & Sustainable Energy Reviews, 66, 775-801(2016). https://doi.org/10.1016/j.rser.2016.08.046
  16. Brown, R. C. (Ed.), "Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power," Chichester, UK, Wiley, 47-77(2011).
  17. Warnecke, R., "Gasification of Biomass: Comparison of Fixed Bed and Fluidized Bed Gasifier," Biomass & Bioenergy, 18, 489-497(2000). https://doi.org/10.1016/S0961-9534(00)00009-X
  18. Rao, T. R. and Ram Bheemarasetti, J. V., "Minimum Fluidization Velocities of Mixtures of Biomass and Sands," Energy, 26, 633-644(2001). https://doi.org/10.1016/S0360-5442(01)00014-7
  19. Milne, T. A., Evans, R. J. and Abatzoglou, N., "Biomass Gasifier "tars": Their Nature, for mation, and Conversion," National Renewable Energy Laboratory Report, NREL/TP-570-23357 (1998).
  20. Anis, S. and Zainal, Z. A., "Tar Reduction in Biomass Producer Gas via Mechanical, Catalytic and Thermal Methods: A Review," Renewable & Sustainable Energy Reviews, 15, 2355-2377(2011). https://doi.org/10.1016/j.rser.2011.02.018
  21. Li, C. and Suzuki, K., "Tar Property, Analysis, Reforming Mechanism and Model for Biomass Gasification-An Overview," Renewable & Sustainable Energy Reviews, 13, 594-604(2009). https://doi.org/10.1016/j.rser.2008.01.009
  22. Yung, M. M., Magrini-Bair, K. A., Parent, Y. O., Carpenter, D. L., Feik, C. J., Gaston, K. R., Pomeroy, M. D. and Phillips, S. D., "Demonstration and Characterization of Ni/Mg/K/AD90 Used for Pilot-scale Conditioning of Biomass-derived Syngas," Catalysis Letters, 134, 242-249(2010). https://doi.org/10.1007/s10562-009-0246-y
  23. Magrini-Bair, K. A., Czernik, S., French, R., Parent, Y. O., Chornet, E., Dayton, D. C., Feik, C. and Bain, R., "Fluidizable Reforming Catalyst Development For Conditioning Biomass-derived Syngas," Applied Catalysis A: General, 318, 199-206(2007). https://doi.org/10.1016/j.apcata.2006.11.005
  24. Rapagna, S., Jand, N., Kiennemann, A. and Foscolo, P. U., "Steam-gasification of Biomass in a Fluidised-bed of Olivine Particles," Biomass and Bioenergy, 19, 187-197(2000). https://doi.org/10.1016/S0961-9534(00)00031-3
  25. An, S. H., Park, J. Y., Jin, G. T. and Rhee, Y. W., "Low-rank Coal Char Gasification Research with Mixed Catalysts at Fixed Reactor," Korean Chemical Engineering Research, 55, 99-106(2017). https://doi.org/10.9713/kcer.2017.55.1.99
  26. Bak, Y. C. and Choi, J. H., "Catalytic Carbonization of Biomass and Nonisothermal Combustion Reactivity of Torrefied Biomass," Korean Chemical Engineering Research, 56, 725-731(2018). https://doi.org/10.9713/kcer.2018.56.5.725
  27. Yun, Y. S., Chumg, S. W. and Lee, S. J., "Dust Removal Efficiency and Operation Characteristics of Metal Filters for Coal Gasification Fines and Standard Dust Sample," Korean Chemical Engineering Research, 57, 461-468(2019).
  28. Benedikt F., Fuchs J., Schmid J. C., Muller S. and Hofbauer H., "Advanced Dual Fluidized Bed Steam Gasification of Wood and Lignite with Calcite as Bed Material," Korean Journal of Chemical Engineering, 34, 2548-2558(2017). https://doi.org/10.1007/s11814-017-0141-y
  29. Yoo, H. M., Lee, J. S., Yang, W. S., Choi, H. S., Jang, H. N. and Seo, Y. C., "Co-gasification Characteristics of Palm Oil by-prod-Ucts and Coals for Syngas Production," Korean Journal of Chemical Engineering, 35, 654-661(2018). https://doi.org/10.1007/s11814-017-0312-x
  30. Yun, Y. M., Seo, M. W., Ra, H. W., Yoon, S. J., Mun, T. Y., Moon, J. H., Kook, J. W., Kim, Y. K., Lee, J. G. and Kim, J. H., "Gasification Characteristics of Glass Fiber-reinforced Plastic (GFRP) Wastes in a Microwave Plasma Reactor," Korean Journal of Chemical Engineering, 34, 2756-2763(2017). https://doi.org/10.1007/s11814-017-0168-0
  31. Neeft, J. P. A., "Rationale for Setup of Impinger Train," CEN BT/TF 143(2005).
  32. Mun, T. Y., "Air Gasification of Dried Sewage Sludge : Tar Removal and the Improvement of Producer Gas Quality by the Application of Additives in a Two-stage Gasifier," Ph.D. Dissertation, University of Seoul, Republic of Korea, Seoul(2013).
  33. Jo, W. J., Jeong, S. H., Park, S. J., Choi, Y. T. and Lee, D. H., "Effects of Biomass Gasification by Addition of Steam and Calcined Dolomite in Bubbling Fluidized Beds," The Korean J. Chem. Eng., 53, 783-791(2015). https://doi.org/10.9713/kcer.2015.53.6.783
  34. Kim, Y. D., Yang, C. W., Kim, B. J., Kim, K. S., Lee, J. W., Moon, J. H., Yang, W., Yu, T. U. and Lee, U. D., "Air-blown Gasification of Woody Biomass in a Bubbling Fluidized Bed Gasifier," Applied Energy, 112, 414-420(2013). https://doi.org/10.1016/j.apenergy.2013.03.072
  35. Kitzler, H., Pfeifer, C. and Hofbauer, H., "Pressurized Gasification of Woody Biomass-Variation of Parameter," Fuel Processing Technology, 92, 908-914(2011). https://doi.org/10.1016/j.fuproc.2010.12.009
  36. Kook, J. W., Choi, H. M., Kim, B. H., Ra, H. W. Yoon, S. J., Mun, T. Y., Kim, J. H., Kim, Y. K., Lee, J. G. and Seo, M. W., "Gasification and Tar Removal Characteristics of Rice Husk in a Bubbling Fluidized Bed Reactor," Fuel, 181, 942-950(2016). https://doi.org/10.1016/j.fuel.2016.05.027
  37. Subramanian, P., Sampathrajan, A. and Venkatachalam, P., "Fluidized Bed Gasification of Select Granular Biomaterials," Bioresource Technology, 102, 1914-1920(2011). https://doi.org/10.1016/j.biortech.2010.08.022
  38. Narvaez, I., Orio, A., Aznar, M. P. and Corella, J., "Biomass Gasification with Air in An Atmospheric Bubbling Fluidized Bed: Effect of Six Operational Variables on the Quality of the Produced Raw Gas," Ind. Eng. Chem. Res., 35, 2110-2120(1996). https://doi.org/10.1021/ie9507540
  39. Sun, S., Zhao, Y., Su, F. and Ling, F., "Gasification of Rice Husk In a Cyclone Gasifier," Korean J. Chem. Eng., 26(2), 528-533 (2009). https://doi.org/10.1007/s11814-009-0090-1
  40. Makwana, J. P., Joshi, A. K., Athawale, G., Singh, D. and Mohanty, P., "Air Gasification of Rice Husk in Bubbling Fluidized Bed Reactor with Bed Heating by Conventional Charcoal," Bioresource Technology, 178, 45-52(2015). https://doi.org/10.1016/j.biortech.2014.09.111
  41. Abel, S., David, N. and Javier, D., "Steam-Iron Process as an Alternative to Water Gas Shift Reaction in Biomass Gasification," International Journal of Hydrogen Energy, 40, 5074-5080 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.043
  42. Anton, L., Mikael, I., Fredrik, L., Martin, S. and Henrik, T., "Using Ilmenite to Reduce the Tar Yield in a Dual Fluidized Bed Gasification System," Energy & Fuels, 28, 2632-2644(2014). https://doi.org/10.1021/ef500132p