DOI QR코드

DOI QR Code

The Effect of Different Membranes on the Performance of Aqueous Organic Redox Flow Battery using Methyl Viologen and TEMPOL Redox Couple

다양한 멤브레인을 적용한 메틸 바이올로겐과 템폴 활물질 기반 수계 유기 레독스 흐름 전지 성능 평가

  • Park, GyunHo (Graduate school of Energy and Environment, Seoul National University of Science and Technology) ;
  • Lee, Wonmi (Graduate school of Energy and Environment, Seoul National University of Science and Technology) ;
  • Kwon, Yongchai (Graduate school of Energy and Environment, Seoul National University of Science and Technology)
  • 박균호 (서울과학기술대학교 에너지환경대학원) ;
  • 이원미 (서울과학기술대학교 에너지환경대학원) ;
  • 권용재 (서울과학기술대학교 에너지환경대학원)
  • Received : 2019.08.30
  • Accepted : 2019.09.19
  • Published : 2019.12.01

Abstract

In this study, the evaluation of performance of AORFB using methyl viologen and TEMPOL as organic active materials in neutral supporting electrolyte (NaCl) with various membrane types was performed. Using methyl viologen and TEMPOL as active materials in neutral electrolyte solution, the cell voltage is 1.37V which is relatively high value for AORFB. Two types of membranes were examined for performance comparison. First, when using Nafion 117 membrane which is commercial cation exchange membrane, only the charge process occurred in the first cycle and the single cell couldn't work because of its high resistance. However, when using Fumasep anion exchange membrane (FAA-3-50) instead of Nafion 117 membrane, the result was obtained as the totally different charge-discharge graphs. When current density was $40mA{\cdot}cm^{-2}$ and cut off voltage range was from 0.55 V to 1.7 V, the charge efficiency (CE) was 97% and voltage efficiency (VE) was 78%. In addition, the discharge capacity was $1.44Ah{\cdot}L^{-1}$ which was 54% of theoretical capacity ($2.68Ah{\cdot}L^{-1}$) at $10^{th}$ cycle and the capacity loss rate was $0.0015Ah{\cdot}L^{-1}$ per cycle during 50 cycles. Through cyclic voltammetry test, it seems that this difference in the performance between the full cell using Nafion 117 membrane and Fumasep anion exchange membrane came from increasing resistance due to chemical reaction between membrane and active material, not the capacity loss due to cross-over of active material through membrane.

본 연구에서는 유기물인 메틸 바이올로겐(methyl viologen, MV)과 템폴(4-hydroxy-TEMPO, TEMPOL)을 활물질로 사용하고 NaCl의 중성 전해질 기반 수계 유기 레독스 흐름전지 성능이 멤브레인에 따라 어떻게 영향을 받는지 분석하였다. 메틸 바이올로겐(MV)과 템폴(TEMPOL)은 중성 전해질인 염화나트륨(NaCl) 전해질에 대해 높은 셀전압(1.37 V)을 얻을 수 있다. 성능 비교를 위해 사용한 멤브레인은 두 가지이다. 첫째로, 상용 양이온 교환막 중 하나인 Nafion 117를 사용하였을 때 성능은 첫번째 사이클에서 충전만 일어났을 뿐 그 후 높은 저항 때문에 완전지가 작동하지 않았다. 하지만 두번째로 사용한 Fumasep 음이온 교환막(FAA-3-50)은 Nafion 117 멤브레인을 사용했을 때와는 다르게 비교적 안정적인 충방전 사이클링을 보였다. 전류 밀도 $40mA{\cdot}cm^{-2}$, 컷-오프 전압 0.55~1.7 V에서 전류 효율(charge efficiency)은 97%, 전압 효율(voltage efficiency)은 78%로 높게 나타났다. 방전 용량(discharge capacity)은 10사이클에서 $1.44Ah{\cdot}L^{-1}$로 이론 용량($2.68Ah{\cdot}L^{-1}$)의 54%를 나타내었다. 방전 용량의 용량 손실율(capacity loss rate)은 $0.0015Ah{\cdot}L^{-1}/cycle$ 로 나타났다. 순환주사전류 실험을 통해 Nafion 117 멤브레인과 Fumasep 음이온 교환막 사이의 이러한 성능차이는 활물질의 크로스 오버(cross over) 현상으로 인한 방전 용량 손실이 아닌 멤브레인과 활물질의 화학적 반응으로 인한 저항 증가가 원인임을 파악할 수 있었다.

Keywords

References

  1. Ibrahim, H., Ilinca, A. and Perron, J., "Energy Storage Systemscharacteristics and Comparisons," Renew. Sustain. Energy Rev., 12, 1221-1250(2008). https://doi.org/10.1016/j.rser.2007.01.023
  2. Hyun, K., Kang, S. and Kwon, Y., "Performance Evaluation of Glucose Oxidation Reaction Using Biocatalysts Adopting Different Quinone Derivatives and Their Utilization in Enzymatic Biofuel Cells," Korean J. Chem. Eng., 36, 500-504(2019). https://doi.org/10.1007/s11814-018-0218-2
  3. Christwardana, M., Chung, Y., Kim, D. H. and Kwon, Y., "Glucose Biofuel Cells Using The Two-step Reduction Reaction of Bienzyme Structure as Cathodic Catalyst," J. Ind. Eng. Chem., 71, 435-444(2019). https://doi.org/10.1016/j.jiec.2018.11.056
  4. Christwardana, M., Frattini, D., Duarte, K. D., Accardo, G. and Kwon, Y., "Carbon Felt Molecular Modification and Biofilm Augmentation via Quorum Sensing Approach in Yeast-based Microbial Fuel Cells," Appl. energy, 238, 239-248(2019). https://doi.org/10.1016/j.apenergy.2019.01.078
  5. Christwardana, M., Chung, Y., Tannia, D. C. and Kwon, Y., "Effects of the Gold Nanoparticles Including Different Thiol Functional Groups on the Performances of Glucose-oxidase-based Glucose Sensing Devices," Korean J. Chem. Eng., 35, 2421-2429(2018). https://doi.org/10.1007/s11814-018-0163-0
  6. Chung, Y., Jeong, J., Pham, H. T. T., Lee, J. and Kwon, Y., "Sulfenic Acid Doped Mesocellular Carbon Foam as Powerful Catalyst for Activation of V (II)/V (III) Reaction in Vanadium Redox Flow Battery," J. Electrochem. Soc., 165, A2703-A2708(2018). https://doi.org/10.1149/2.0741811jes
  7. Noh, C., Lee, C., Chi, W. S., Chung, Y., Kim, J. and Kwon, Y., "Nitrogen-doped Carbon Nanotube Decorated Electrocatalysts Derived from Metal-organic Framework for Performance Enhancement of Vanadium Redox Flow Battery," J. Electrochem. Soc., 165, A1388-A1399(2018). https://doi.org/10.1149/2.0621807jes
  8. Lee, W., Jo, C., Youk, S., Shin, H. Y., Lee, J., Chung, Y. and Kwon, Y., "Mesoporous Tungsten Oxynitride as Electrocatalyst for Promoting Redox Reactions of Vanadium Redox Couple and Performance of Vanadium Redox Flow Battery," Appl. Surf. Sci., 429, 187-195(2018). https://doi.org/10.1016/j.apsusc.2017.07.022
  9. Yue, L., Li, W., Sun, F., Zhao, L. and Xing, L., "Highly Hydroxylated Carbon Fibres as Electrode Materials of All-vanadium Redox Flow Battery," Carbon, 48, 3079-3090(2010). https://doi.org/10.1016/j.carbon.2010.04.044
  10. Alotto, P., Guarnieri, M. and Moro, F., "Redox Flow Batteries for the Storage of Renewable Energy: A Review," Renew. Sustain. Energy Rev., 29, 325-335(2014). https://doi.org/10.1016/j.rser.2013.08.001
  11. Xi, J., Wu, Z., Qiu, X. and Chen, L., "Nafion/$SiO_2$ Hybrid Membrane for Vanadium Redox Flow Battery," J. Power Sources, 166, 531-536(2007). https://doi.org/10.1016/j.jpowsour.2007.01.069
  12. Bartolozzi, M., "Development of Redox Flow Batteries. A Historical Bibliography," J. Power Sources, 27, 219-234(1989). https://doi.org/10.1016/0378-7753(89)80037-0
  13. Moon, S., Kwon, B. W., Chung, Y. and Kwon, Y., "Effect of Bismuth Sulfate Coated on Acidified CNT on Performance of Vanadium Redox Flow Battery," J. Electrochem. Soc., 166, A2602-A2609(2019). https://doi.org/10.1149/2.1181912jes
  14. Jung, M., Lee, W., Noh, C., Konovalova, A., Yi, G. S., Kim, S., Kwon, Y. and Henkensmeier, D., "Blending Polybenzimidazole with an Anion Exchange Polymer Increases the Efficiency of Vanadium Redox Flow Batteries," J. Memb. Sci., 580, 110-116 (2019). https://doi.org/10.1016/j.memsci.2019.03.014
  15. Noh, C., Kwon, B. W., Chung, Y. and Kwon, Y., "Effect of the Redox Reactivity of Vanadium Ions Enhanced by Phosphorylethanolamine Based Catalyst on the Performance of Vanadium Redox Flow Battery," J. Power Sources, 406, 26-34(2018). https://doi.org/10.1016/j.jpowsour.2018.10.042
  16. Chung, Y., Jeong, J., Pham, H. T. T., Lee, J. and Kwon, Y., "Sulfenic Acid Doped Mesocellular Carbon Foam as Powerful Catalyst for Activation of V (II)/V (III) Reaction in Vanadium Redox Flow Battery," J. Electrochem. Soc., 165, A2703-A2708(2018). https://doi.org/10.1149/2.0741811jes
  17. Lee, W., Permatasari, A., Kwon, B. W. and Kwon, Y., "Performance Evaluation of Aqueous Organic Redox Flow Battery Using Anthraquinone-2,7-disulfonic Acid Disodium Salt and Potassium Iodide Redox Couple," Chem. Eng. J., 358, 1438-1445(2019). https://doi.org/10.1016/j.cej.2018.10.159
  18. Lee, W. and Kwon, Y., "Performance Evaluation of Aqueous Organic Redox Flow Battery Using Methylene Blue and Vanadium Redox Couple," Korean Chem. Eng. Res., 56, 890-894(2018).
  19. Lee, W., Chung, K. and Kwon, Y., "Performance Evaluation of Aqueous Organic Redox Flow Battery using Anthraquinone and Benzoquinone Redox Couple with Ammonium Chloride Electrolyte," Korean Chem. Eng. Res., 57, 239-243(2019).
  20. Lee, W., Kwon, B. W. and Kwon, Y., "Effect of Carboxylic Acid-doped Carbon Nanotube Catalyst on the Performance of Aqueous Organic Redox Flow Battery Using the Modified Alloxazine and Ferrocyanide Redox Couple," ACS Appl. Mater. Interfaces, 10, 36882-36891(2018). https://doi.org/10.1021/acsami.8b10952
  21. Chen, Q., Gerhardt, M. R., Hartle, L. and Aziz, M. J., "A Quinone-bromide Flow Battery with 1 $W/cm^2$ Power Density," J. Electrochem. Soc., 163, A5010-A5013(2016). https://doi.org/10.1149/2.0021601jes
  22. Lin, K., Gomez-Bombarelli, R., Beh, E. S., Tong, L., Chen, Q., Valle, A., Aspuru-Guzik, A., Aziz, M. J. and Gordon, R. G., "A Redox-flow Battery with an Alloxazine-based Organic Electrolyte," Nat. Energy, 1, 16102(2016). https://doi.org/10.1038/nenergy.2016.102
  23. Janoschka, T., Martin, N., Hager, M. D. and Schubert, U. S., "An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System," Angew. Chem. Int. Ed., 55, 14427-14430 (2016). https://doi.org/10.1002/anie.201606472
  24. DeBruler, C., Hu, B., Moss, J., Luo, J. and Liu, T. L., "A Sulfonate-functionalized Viologen Enabling Neutral Cation Exchange, Aqueous Organic Redox Flow Batteries Toward Renewable Energy storage," ACS Energy Lett., 3, 663-668(2018). https://doi.org/10.1021/acsenergylett.7b01302
  25. Hu, B., DeBruler, C., Rhodes, Z. and Liu, T. L., "Long-cycling Aqueous Organic Redox Flow Battery (AORFB) Toward Sustainable and Safe Energy Storage," J. Am. Chem. Soc., 139, 1207-1214(2017). https://doi.org/10.1021/jacs.6b10984
  26. Weber, A. Z., Mench, M. M., Meyers, J. P., Ross, P. N., Gostick, J. T. and Liu, Q., "Redox Flow Batteries: a Review," J. Appl. Electrochem., 41, 1137(2011). https://doi.org/10.1007/s10800-011-0348-2
  27. Orita, A., Verde, M. G., Sakai, M. and Meng, Y. S., "The Impact of pH on Side Reactions for Aqueous Redox Flow Batteries Based on Nitroxyl Radical Compounds," J. Power Sources, 321, 126-134(2016). https://doi.org/10.1016/j.jpowsour.2016.04.136
  28. Wang, W. H. and Wang, X. D., "Investigation of Ir-modified Carbon Felt as the Positive Electrode of an All-vanadium Redox Flow Battery," Electrochim. Acta, 52, 6755-6762(2007). https://doi.org/10.1016/j.electacta.2007.04.121