DOI QR코드

DOI QR Code

Analysis of Growth and Functional substance for Cyperus rotundus and Glehnia littoralis by EC Treatment in Reclaimed Soil Conditions

간척지 토양에서 EC 처리에 따른 향부자와 갯방풍의 생육 및 기능성 물질 함량 분석

  • Jang, Ji-Hyeon (Department of Horticultural Science, Chungnam National University) ;
  • Shin, Hye-In (Department of Horticultural Science, Chungnam National University) ;
  • Park, Jong-Seok (Department of Horticultural Science, Chungnam National University)
  • Received : 2019.10.02
  • Accepted : 2019.10.14
  • Published : 2019.10.30

Abstract

The purpose of this study was to analyze the growth and functional differences between C. rotundus and G. littoralis according to different electrical conductivity (EC) conditions in reclaimed soil conditions. C. rotundus and G. littoralis seeds were sown in a tray and managed for seedlings stage for eight weeks. They were transplanted in the pots containing reclaimed soils sampled in the Saemangum region. The plants were grown in the reclaimed land soil for 12 weeks under the control, 1, 2, 4, and $8dS{\cdot}m^{-1}$ conditions and in horticultural soils with EC $1.0dS{\cdot}m^{-1}$. Plant height, leaf length and width of C. rotundus were the highest in EC $1dS{\cdot}m^{-1}$. Leaf, flower and tuber numbers of C. rotundus were the highest in EC $2dS{\cdot}m^{-1}$ and the lowest in EC $8dS{\cdot}m^{-1}$, and SPAD was the highest in EC 2 and $4dS{\cdot}m^{-1}$ and the lowest in EC $8dS{\cdot}m^{-1}$. The fresh weights of shoot and root of C. rotundus grown under EC $2dS{\cdot}m^{-1}$ increased and then decreased as the concentration increased. When compared plant growth between reclaimed soil and horticulture soil with EC $1dS{\cdot}m^{-1}$, the fresh weights of shoot and root, SPAD, leaf number, flower number, and tuber number were higher in horticultural soils. Although G. littoralis grown under EC $8dS{\cdot}m^{-1}$ was the lowest in all growth parameters, there were no significant differences among other EC treatments. C. rotundus had the highest p-coumaric acid content in EC $1dS{\cdot}m^{-1}$. And the catechin content in shoot of G. littoralis was the highest in the control, and root of Glehnia littoralis had the highest benzoic acid contents in EC $1dS{\cdot}m^{-1}$. If the soil EC is well managed within $4.0dS{\cdot}m^{-1}$, two plants would be cultivated in reclaimed land.

본 실험의 목적은 간척지 토양에서 다른 EC처리에 따라 향부자와 갯방풍의 생장 및 기능성물질 차이를 분석하고자 수행하였다. 향부자와 갯방풍 종자를 트레이에 파종 후 8주간 온실에서 육묘하였고 새만금 지역에서 채취한 간척지 토양을 담은 포트에 이식하였다. 식물은 EC농도에 따라, 대조구, 1, 2, 4, $8dS{\cdot}m^{-1}$ 조건으로 12주간 실험을 진행했고 추가로 간척지 토양에서의 EC $1dS{\cdot}m^{-1}$과 원예용 상토를 구분하여 생육을 비교했다. 향부자의 초장, 엽장 엽폭은 EC $1dS{\cdot}m^{-1}$에서 가장 높았다. 엽수, 화방 수, 인편 수는 EC $2dS{\cdot}m^{-1}$에서 가장 크고 EC $8dS{\cdot}m^{-1}$에서 가장 적었으며, SPAD는 EC 2와 $4dS{\cdot}m^{-1}$에서 가장 높고 EC $8dS{\cdot}m^{-1}$에서 가장 낮았다. 지상부와 지하부의 생체중은 EC $2dS{\cdot}m^{-1}$까지 증가하다가 농도가 증가함에 따라 값이 감소했다. EC $1dS{\cdot}m^{-1}$ 조건에서 간척지토양과 원예용 상토에서 자란 작물의 생육을 비교했을 때 SPAD, 엽수, 화방 수, 인편 수, 지상부와 지하부의 생체중은 원예용 상토에서 더 높았다. 갯방풍은 모든 생육 조건에서 EC $8dS{\cdot}m^{-1}$가 가장 낮았으며 EC $8dS{\cdot}m^{-1}$을 제외하고 다른 처리구에서는 유의적인 차이를 확인할 수 없었다. 향부자는 EC $1dS{\cdot}m^{-1}$에서 p-coumaric acid 함량이 가장 높았고, 갯방풍의 지상부는 catechin의 함량이 대조구에서 가장 높았으며 지하부는 EC $1dS{\cdot}m^{-1}$에서 benzoic acid 함량이 가장 높았다. 간척지 토양을 EC $4dS{\cdot}m^{-1}$ 이내로 관리 할 수 있다면 향부자와 갯방풍의 재배가 가능할 수 있을 것으로 판단된다.

Keywords

References

  1. Alsher R.G. and J.L. Hess. 1993. Antioxidants in higher plants. CRC Press, Boca Raton, FL, USA. p.1-174.
  2. Amalfitano, C., Del Vacchio, L., Somma, S., Cuciniello, A., Caruso, G., 2017. Effects of cultural cycle and nutrient solution electrical conductivity on plant growth, yield and fruit quality of ‘Friariello’ pepper grown in hydroponics. Hortic Sci, 44: 91-98. https://doi.org/10.17221/172/2015-HORTSCI
  3. Bae J.H. and K. H. Kim. 2004. The Effect of Irrigation Concentration on the Growth and Fruit Quality of Sweet Pepper( Capsicum annuum L.) in Fertigation. Journal of Bio-Environment Control. 13:167-171. (in Korean)
  4. Choi K. Y., Y. B. Lee, and Y. Y. Cho. 2011. Allyl-isothiocyanate Content and Physiological Respones of Wasabia japonica Matusum as Affected by Different EC Levels in Hydroponics. Kor. J. Hort. Sci. Technol. 29:311-316.
  5. Cornic G. and C. Fresneau. 2002. Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Ann. Bot. 89:887-894. https://doi.org/10.1093/aob/mcf064
  6. Cuartero J. and F.M. Rafael. 1999. Tomato and salinity. Sci. Hort. 78:83-125. https://doi.org/10.1016/S0304-4238(98)00191-5
  7. Dassanayake M., Fosberg, F.R. 1985. A Revised Handbook of the Flora of Ceylon, part V. A. A. Balkema, Rotterdam, Netherlands. p. 181.
  8. Degl'Innocenti, E., Hafsi, C., Guidi, L., Navari-Izzo, F., 2009. The effect of salinity on photosynthetic activity in potassium- deficient barley species. J. Plant Physiol., 166: 1968-1981. https://doi.org/10.1016/j.jplph.2009.06.013
  9. Galieni, A., Di Mattia, C., De Gregorio, M., Speca, S., Mastrocola, D., Pisante, M., Stagnari, F., 2015. Effects of nutrient deficiency and abiotic environmental stresses on yield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.). Sci Hortic, 187: 93-101. https://doi.org/10.1016/j.scienta.2015.02.036
  10. Hwang E.Y, D.H. Kim, J.Y. Hwang, and H.J. Kim. 2012. A Study on the Depigmenting Effect of Carthamus tinctorius Seed, Cyperus rotundus and Schizonepeta tenuifolia Extracts. Korean J. Food Sci. Technol. 44:76-81. (in Korean) https://doi.org/10.9721/KJFST.2012.44.1.076
  11. Khan M. A., I. A. Ungar, and A. M. Showalter. 1999. Effects of salinity on growth, ion content, and osmotic relations in Halopyrum mocoronatum (L.) Stapf. J. Plant Nutr. 22:191-204. https://doi.org/10.1080/01904169909365617
  12. Kim B.G, J.C. Kim, and J.K. Rye. 1997. Production Status and Economic Analysis in Chief Producing Area of Cyperus rotundus. Korean Journal Medicinal Crop Science 5:243-248. (in Korean)
  13. Kim S.M, D.I. Hong, H.S. Song, S.K. Kim, and S.T. Yoon. 2005. Geographical Distribution and Habitat Characteristics of Glehnia littoralis Fr. Schmidt in South Korea. Korean J. Medicinal Crop Sci. 13:171-177. (in Korean)
  14. Lee S. G., J. S. Shin, Y. S. Seok, and G. K. Bae. 1998. Effects of Salt Stress on Photosynthesis, Free Proline Content and Ion Content in Tobacco. Korean Journal of Environmental Agriculture. 17:215-219. (in Korean)
  15. Lee S. H. and Y. Ahn. 2003. Current Status and Future Tasks of Reclamation in Korea. Journal of Reclaimed land agriculture research. 1:20-31. (in Korean)
  16. Lee Y.M., J. Yun, S.H. Shin, and W.Y. Choi. 1998. Varietal difference in seedling growth and cation contents under NaCl treated rice. Kor. J. Breed. 30:104-113. (in Korean)
  17. Li Y., T. Wu, J. zhu, L. Wan, Q. Yu, X. Li, Z. Cheng, C. Guo. 2010. Combinative method using HPLC fingerprint and quantitative analyses for quality consistency evaluation of an herbal medicinal preparation produced by different manufacturers. Journal of Pharmaceutical and Biomedical Analysis. 52:597-602. https://doi.org/10.1016/j.jpba.2010.01.018
  18. Lu, N., Bernardo, E.L., Tippayadarapanich, C., Takagaki, M., Kagawa, N., Yamori, W., 2017. Growth and accumulation of secondary metabolites in perilla as affected by photosynthetic photon flux density and electrical conductivity of the nutrient solution. Front Plant Sci, 8: 708. https://doi.org/10.3389/fpls.2017.00708
  19. Lutts S., J.M. Kinet, and J. Bouharmont. 1996. Change in plant response to NaCl during development of rice varieties differing in salinity resistance. J. Exp. Bot. 46:1842-1852.
  20. Ministry of Agriculture, Food and Rural Affairs, 2017, 2017 Industrial crop production performance
  21. Moon J. H., Y. A. Jang, H. K. Yun. S. G. Lee, and J. w. Lee. 2010. Determination of Salt Type, Salt Concentration, and Salt Application Method and Timing for Suppression of Stem Elongation. Journal of Bio-Environment Control. 19:317-323. (in Korean)
  22. Pal D.K., S. Dutta. 2006. Evaluation of the Antioxidant activity of the roots and Rhizomes of Cyperus rotundus L. Indian J. Pharm.Sci. 68:256- 258 https://doi.org/10.4103/0250-474X.25731
  23. Park E.J, Y.G. Sohn, J.C. Park, and J.J. Lee. 2006. Effects of NaCl on the Growth and Inorganic Ion Contents of Green Pepper 'Nokwang' and Bell Pepper 'Newace'. Kor. J. Hort. Sci. Technol. 24:1-7. (in Korean).
  24. Pecanha, A.L., da Silva, J.R., Rodrigues, W.P., Ferraz, T.M., Netto, A.T., Lima, R.S.N., Lopes, T.S., Ribeiro, M.S., de Deus, B.C.D., et al. 2017. Leaf gas exchange and growth of two papaya (Carica papaya L.) genotypes are affected by elevated electrical conductivity of the nutrient solution. Sci. Horti, 218: 230-239. https://doi.org/10.1016/j.scienta.2017.02.018
  25. Perez-Alfocea, F., M.T. Estan, A.S. Cruz, and M.C. Bolarin. 1993. Effects of salinity on nitrate, total nitrogen, soluble protein and free amino acid levels in tomato plants. J. Hort. Sci. 68:1021-1027. https://doi.org/10.1080/00221589.1993.11516443
  26. Rhee H.C, M.W. Cho, S.Y. Lee, G.L. Choi, and J.H. Lee. 2007. Effect of Salt Concentration in Soil on the Growth, Yield, Photosynthetic Rate, and Mineral Uptake of Tomato in Protected Cultivation. Journal of Bio-Environment Control, 16:328-332. (in Korean)
  27. Ryu S. H. and M. E. Park. 2004. Saemangeum Reclaimed Land Agricultural Plan. Journal of Reclaimed land agriculture research. 2:68-91. (in Korean)
  28. Seo Y. K. and K. S. Ryu. 1977. Study on the Components of Glehniae Radix. Kor. J. Pharmacog. 7:233-235. (in Korean)
  29. Shin J.S, S.H. Lee, W.H. Kim, J.G. Kim, S.H. Yoon, and K.B. Lim. 2005. Effects of Ammonium Sulfate and Potassium Sulfate Fertilizer on Dry Matter Yield and Forge Quality of Sorghum X Sudangrass Hybrid in Reclamied Tidal Land . The Korean Society of Grassland and Forage Science. 25:245-250. (in Korean) https://doi.org/10.5333/KGFS.2005.25.4.245
  30. Sim D.W, K. J. Nam, and Y. H. Kim. 2018. Analysis of Antioxidant Enzyme Activity During Seedling Growth of Leymus chinensis Trin Under Salt and Dehydration Stresses. Journal of Life Science. 28:727-777. (in Korean)
  31. Son, J. G., J. K. Choi, and J. Y. Cho. 2009. Chemical propertiesof soil in the proposed horticultural complexes of SaemangeumReclaimed Tideland. Journal of the KoreanSociety of Agricultural Engineers 51:67-73. (in Korean) https://doi.org/10.5389/KSAE.2009.51.4.067
  32. Sonwa M.M and W.A. Konig. 2001. Chemical study of the essential oil of Cyperus rotundus. Phytochemistry 58:799-810. https://doi.org/10.1016/S0031-9422(01)00301-6
  33. Taiz L. and E. Zeiger. 2013. Plant Physiology. Life Science Publishing CO., Seoul, Korea. P. 279-282.
  34. Zhu J. K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53:248-273.
  35. Zhu Y.C, D.C. Wu, J.F. Li. 1989. Plantae Medicinales Chinae Boreali-Orientalis. Heilongjiang science and Technology publishing house. Heilongjiang, China. p. 827-829.