DOI QR코드

DOI QR Code

Effect of Sintering Additive and Composition on Cutting Performance of SiAlON

SiAlON의 절삭성능에 미치는 소결조제와 조성의 영향에 대한 연구

  • Choi, Jae-Hyeong (Engineering Ceramics Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Sung-Min (Engineering Ceramics Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Nahm, Sahn (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Seongwon (Engineering Ceramics Center, Korea Institute of Ceramic Engineering & Technology)
  • 최재형 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 이성민 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 남산 (고려대학교 신소재공학과) ;
  • 김성원 (한국세라믹기술원 이천분원 엔지니어링세라믹센터)
  • Received : 2019.10.11
  • Accepted : 2019.10.25
  • Published : 2019.10.28

Abstract

SiAlON ceramics are used as ceramic cutting tools for heat-resistant super alloys (HRSAs) due to their excellent fracture toughness and thermal properties. They are manufactured from nitride and oxide raw materials. Mixtures of nitrides and oxides are densified via liquid phase sintering by using gas pressure sintering. Rare earth oxides, when used as sintering additives, affect the color and mechanical properties of SiAlON. Moreover, these sintering additives influence the cutting performance. In this study, we have prepared $Yb_{m/3}Si_{12-(m+n)}Al_{m+n}O_nN_{16-n}$ (m = 0.5; n = 0.5, 1.0) ceramics and manufactured SiAlON ceramics, which resulted in different colors. In addition, the characteristics of the sintered SiAlON ceramics such as fracture toughness and microstructure have been investigated and results of the cutting test have been analyzed.

Keywords

References

  1. R. M'Saoubi, D. Axinte, S. L. Soo, C. Nobel, H. Attia, G. Kappmeyer, S. Engin and W.-M. Sim: CIRP Annals, 64 (2015) 557. https://doi.org/10.1016/j.cirp.2015.05.002
  2. D. Ulutan and T. Ozel: Int. J. Mach. Tools Manuf., 51 (2011) 250. https://doi.org/10.1016/j.ijmachtools.2010.11.003
  3. A. Rosenflanz and I.-W. Chen: J. Am. Ceram. Soc., 82 (2004) 1025. https://doi.org/10.1111/j.1151-2916.1999.tb01869.x
  4. A. Rosenflanz and I.-W. Chen: J. Eur. Ceram. Soc., 19 (1999) 2325. https://doi.org/10.1016/S0955-2219(99)00097-7
  5. G. Chakraborty, S. Bandyopadhyay, B. Haldar and R. Das: Ceram. Int., 37 (2011) 1011. https://doi.org/10.1016/j.ceramint.2010.11.021
  6. H. Mandal: J. Eur. Ceram. Soc., 19 (1999) 2349. https://doi.org/10.1016/S0955-2219(99)00111-9
  7. J.-H. Choi, S.-M. Lee, S. Nahm and S. Kim: in preparation (2019).
  8. J.-H. Choi, S.-M. Lee, S. Nahm and S. Kim: in preparation (2019).
  9. N. Shibata, S. J. Pennycook, T. R. Gosnell, G. S. Painter, W. A. Shelton and P. F. Becher: Nature, 428 (2004) 730. https://doi.org/10.1038/nature02410
  10. M. I. Jones, K. Hirao, H. Hyuga, Y. Yamauchi and S. Kanzaki: J. Eur. Ceram. Soc., 23 (2003) 1743. https://doi.org/10.1016/S0955-2219(02)00401-6
  11. E. O. Ezugwu, Z. M. Wang and A. R. Machado: J. Mater. Process. Tech., 86 (1999) 1. https://doi.org/10.1016/S0924-0136(98)00314-8
  12. D. Zhu, X. Zhang and H. Ding: Int. J. Mach. Tools Manuf., 64 (2013) 60. https://doi.org/10.1016/j.ijmachtools.2012.08.001
  13. T. E. Fischer, Z. Zhu, H. Kim and D. S. Shin: Wear, 245 (2000) 53. https://doi.org/10.1016/S0043-1648(00)00465-8
  14. X. Y. Song and J. Zhao: Adv. Mater. Res., 97 (2010) 1920. https://doi.org/10.4028/www.scientific.net/AMR.97-101.1920