References
- Vlot AC, Dempsey DA, Klessig DF. 2009. Salicylic Acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47: 177-206. https://doi.org/10.1146/annurev.phyto.050908.135202
- Bentinger M, Tekle M, Dallner G. 2010. Coenzyme Q--biosynthesis and functions. Biochem. Biophys. Res. Commun. 396: 74-79. https://doi.org/10.1016/j.bbrc.2010.02.147
- Pierrel F. 2017. Impact of chemical analogs of 4-hydroxybenzoic acid on coenzyme Q biosynthesis: From inhibition to bypass of coenzyme Q deficiency. Front Physiol. 8: 436. https://doi.org/10.3389/fphys.2017.00436
- Park JB. 2015. Becatamide found in Houttuynia cordata suppresses P-selectin expression via inhibiting COX enzyme, not increasing cAMP in platelets. Phytother. Res. 29: 1381-1387. https://doi.org/10.1002/ptr.5391
- Oliveira FA, de Almeida RN, Sousa MF, Barbosa-Filho JM, Diniz SA, de Medeiros IA. 2001. Anticonvulsant properties of N-salicyloyltryptamine in mice. Pharmacol. Biochem. Behav. 68: 199-202. https://doi.org/10.1016/S0091-3057(00)00484-6
-
Araujo DA, Mafra RA, Rodrigues AL, Miguel-Silva V, Beirao PS, de Almeida RN, et al. 2003. N-Salicyloyltryptamine, a new anticonvulsant drug, acts on voltage-dependent
$Na^+$ ,$Ca^{2+}$ , and$K^+$ ion channels. Br. J. Pharmacol. 140: 1331-1339. https://doi.org/10.1038/sj.bjp.0705471 - Quintans LJ Jr1, Silva DA, Siqueira JS, Araujo AA, Barreto RS, Bonjardim LR, et al. 2010. Bioassay-guided evaluation of antinociceptive effect of N-salicyloyltryptamine: a behavioral and electrophysiological approach. J. Biomed. Biotechnol. 2010: 230745.
- Gasparotto J, de Bittencourt Pasquali MA, Somensi N, Vasques LM, Moreira JC, de Almeida RN, et al. 2013. Effect of N-salicyloyltryptamine (STP), a novel tryptamine analogue, on parameters of cell viability, oxidative stress, and immunomodulation in RAW 264.7 macrophages. Cell Biol. Toxicol. 29: 175-187. https://doi.org/10.1007/s10565-013-9245-2
- Barker JL, Frost JW. 2001. Microbial synthesis of phydroxybenzoic acid from glucose. Biotechnol. Bioeng. 76: 376-390. https://doi.org/10.1002/bit.10160
- Galle C, Kast P, Haas D. 2002. Salicylate biosynthesis in Pseudomonas aeruginosa. J. Biol. Chem. 277: 21768-27775. https://doi.org/10.1074/jbc.M202410200
- Facchini PJ, Huber-Allanach KL, Tari LW. 2000. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry 54: 121-138. https://doi.org/10.1016/S0031-9422(00)00050-9
- Torrens-Spence MP, Lazear M, von Guggenberg R, Ding H, Li J. 2014. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases. Phytochemistry 106: 37-43. https://doi.org/10.1016/j.phytochem.2014.07.007
- D'Auria JC. 2006. Acyltransferases in plants: a good time to be BAHD. Curr. Opin. Plant Biol. 9: 331-340. https://doi.org/10.1016/j.pbi.2006.03.016
- Kang K, Back K. 2009. Production of phenylpropanoid amides in recombinant Escherichia coli. Metab. Eng. 11: 64-68. https://doi.org/10.1016/j.ymben.2008.08.004
- Sim GY, Yang SM, Kim BG, Ahn J-H. 2015. Bacterial synthesis of N-hydroxycinnamoyl phenethylamines and tyramines. Microb. Cell Fact. 14: 162. https://doi.org/10.1186/s12934-015-0353-y
- Lee SJ, Sim G-Y, Lee Y, Kim B-G, Ahn J-H. 2017. Engineering of Escherichia coli for the synthesis of N-hydroxycinnamoyl tryptamine and serotonin. J. Ind. Microbiol. Biotechnol. 44: 1551-1560. https://doi.org/10.1007/s10295-017-1975-3
- Chung D, Kim SY, Ahn J-H. 2017. Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli. Sci. Rep. 7: 2578. https://doi.org/10.1038/s41598-017-02042-2
- Yoon J-A, Kim B-G, Lee WJ, Lim Y, Chong Y, Ahn J-H. 2012. Production of a novel quercetin glycoside through metabolic engineering of Escherichia coli. Appl. Env. Microbiol. 78: 4256-4262. https://doi.org/10.1128/AEM.00275-12
- Gibson J, Dispensa M, Fogg GC, Evans DT, Harwood CS. 1994. 4-Hydroxybenzoate-coenzyme A ligase from Rhodopseudomonas palustris: purification, gene sequence, and role in anaerobic degradation. J. Bacteriol. 176: 634-641 https://doi.org/10.1128/jb.176.3.634-641.1994
- Lutke-Eversloh T, Stephanopoulos G. 2007. L-Tyrosine production by deregulated strains of Escherichia coli. Appl. Microbiol. Biotechnol. 75: 103-110. https://doi.org/10.1007/s00253-006-0792-9
- Ikeda M. 2006. Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl. Microbiol. Biotechnol. 69: 615-626 https://doi.org/10.1007/s00253-005-0252-y
- Noda S, Kondo A. 2017. Recent advances in microbial production of aromatic chemicals and derivatives. Trends Biotechnol. 35: 785-796. https://doi.org/10.1016/j.tibtech.2017.05.006
- Peng M, Gao Y, Chen W, Wang W, Shen S, Shi J, et al. 2016. Evolutionarily distinct BAHD N-acyltransferases are responsible for natural variation of aromatic amine conjugates in rice. Plant Cell 28: 1533-1550. https://doi.org/10.1105/tpc.16.00265
- Pittard AJ, Davidson BE. 1991. TyrR protein of Escherichia coli and its role as repressor and activator. Mol. Microbiol. 5: 1585-1592. https://doi.org/10.1111/j.1365-2958.1991.tb01904.x
- Argaet VP, Wilson TJ, Davidson BE. 1994. Purification of the Escherichia coli regulatory protein TyrR and analysis of its interactions with ATP, tyrosine, phenylalanine, and tryptophan. J. Biol. Chem. 269: 5171-5178. https://doi.org/10.1016/S0021-9258(17)37671-8
Cited by
- Synthesis of 4-Hydroxybenzoic Acid Derivatives in Escherichia coli vol.68, pp.36, 2019, https://doi.org/10.1021/acs.jafc.0c03149