DOI QR코드

DOI QR Code

Biosynthesis of Two Hydroxybenzoic Acid-Amine Conjugates in Engineered Escherichia coli

  • Kim, Song-Yi (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Han (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Bong-Gyu (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Ahn, Joong-Hoonc (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2019.07.17
  • Accepted : 2019.08.24
  • Published : 2019.10.28

Abstract

Two hydroxybenzoyl amines, 4-hydroxybenzoyl tyramine (4-HBT) and N-2-hydroxybenzoyl tryptamine (2-HBT), were synthesized using Escherichia coli. While 4-HBT was reported to demonstrate anti-atherosclerotic activity, 2-HBT showed anticonvulsant and antinociceptive activities. We introduced genes chorismate pyruvate-lyase (ubiC), tyrosine decarboxylase (TyDC), isochorismate synthase (entC), isochorismate pyruvate lyase (pchB), and tryptophan decarboxylase (TDC) for each substrate, 4-hydroxybenzoic acid (4-HBA), tyramine, 2-hydroxybenzoic acid (2-HBA), and tryptamine, respectively, in E. coli. Genes for CoA ligase (hbad) and amide formation (CaSHT and OsHCT) were also introduced to form hydroxybenzoic acid and amine conjugates. In addition, we engineered E. coli to provide increased substrates. These approaches led to the yield of 259.3 mg/l 4-HBT and 227.2 mg/l 2-HBT and could be applied to synthesize diverse bioactive hydroxybenzoyl amine conjugates.

Keywords

References

  1. Vlot AC, Dempsey DA, Klessig DF. 2009. Salicylic Acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47: 177-206. https://doi.org/10.1146/annurev.phyto.050908.135202
  2. Bentinger M, Tekle M, Dallner G. 2010. Coenzyme Q--biosynthesis and functions. Biochem. Biophys. Res. Commun. 396: 74-79. https://doi.org/10.1016/j.bbrc.2010.02.147
  3. Pierrel F. 2017. Impact of chemical analogs of 4-hydroxybenzoic acid on coenzyme Q biosynthesis: From inhibition to bypass of coenzyme Q deficiency. Front Physiol. 8: 436. https://doi.org/10.3389/fphys.2017.00436
  4. Park JB. 2015. Becatamide found in Houttuynia cordata suppresses P-selectin expression via inhibiting COX enzyme, not increasing cAMP in platelets. Phytother. Res. 29: 1381-1387. https://doi.org/10.1002/ptr.5391
  5. Oliveira FA, de Almeida RN, Sousa MF, Barbosa-Filho JM, Diniz SA, de Medeiros IA. 2001. Anticonvulsant properties of N-salicyloyltryptamine in mice. Pharmacol. Biochem. Behav. 68: 199-202. https://doi.org/10.1016/S0091-3057(00)00484-6
  6. Araujo DA, Mafra RA, Rodrigues AL, Miguel-Silva V, Beirao PS, de Almeida RN, et al. 2003. N-Salicyloyltryptamine, a new anticonvulsant drug, acts on voltage-dependent $Na^+$, $Ca^{2+}$, and $K^+$ ion channels. Br. J. Pharmacol. 140: 1331-1339. https://doi.org/10.1038/sj.bjp.0705471
  7. Quintans LJ Jr1, Silva DA, Siqueira JS, Araujo AA, Barreto RS, Bonjardim LR, et al. 2010. Bioassay-guided evaluation of antinociceptive effect of N-salicyloyltryptamine: a behavioral and electrophysiological approach. J. Biomed. Biotechnol. 2010: 230745.
  8. Gasparotto J, de Bittencourt Pasquali MA, Somensi N, Vasques LM, Moreira JC, de Almeida RN, et al. 2013. Effect of N-salicyloyltryptamine (STP), a novel tryptamine analogue, on parameters of cell viability, oxidative stress, and immunomodulation in RAW 264.7 macrophages. Cell Biol. Toxicol. 29: 175-187. https://doi.org/10.1007/s10565-013-9245-2
  9. Barker JL, Frost JW. 2001. Microbial synthesis of phydroxybenzoic acid from glucose. Biotechnol. Bioeng. 76: 376-390. https://doi.org/10.1002/bit.10160
  10. Galle C, Kast P, Haas D. 2002. Salicylate biosynthesis in Pseudomonas aeruginosa. J. Biol. Chem. 277: 21768-27775. https://doi.org/10.1074/jbc.M202410200
  11. Facchini PJ, Huber-Allanach KL, Tari LW. 2000. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry 54: 121-138. https://doi.org/10.1016/S0031-9422(00)00050-9
  12. Torrens-Spence MP, Lazear M, von Guggenberg R, Ding H, Li J. 2014. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases. Phytochemistry 106: 37-43. https://doi.org/10.1016/j.phytochem.2014.07.007
  13. D'Auria JC. 2006. Acyltransferases in plants: a good time to be BAHD. Curr. Opin. Plant Biol. 9: 331-340. https://doi.org/10.1016/j.pbi.2006.03.016
  14. Kang K, Back K. 2009. Production of phenylpropanoid amides in recombinant Escherichia coli. Metab. Eng. 11: 64-68. https://doi.org/10.1016/j.ymben.2008.08.004
  15. Sim GY, Yang SM, Kim BG, Ahn J-H. 2015. Bacterial synthesis of N-hydroxycinnamoyl phenethylamines and tyramines. Microb. Cell Fact. 14: 162. https://doi.org/10.1186/s12934-015-0353-y
  16. Lee SJ, Sim G-Y, Lee Y, Kim B-G, Ahn J-H. 2017. Engineering of Escherichia coli for the synthesis of N-hydroxycinnamoyl tryptamine and serotonin. J. Ind. Microbiol. Biotechnol. 44: 1551-1560. https://doi.org/10.1007/s10295-017-1975-3
  17. Chung D, Kim SY, Ahn J-H. 2017. Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli. Sci. Rep. 7: 2578. https://doi.org/10.1038/s41598-017-02042-2
  18. Yoon J-A, Kim B-G, Lee WJ, Lim Y, Chong Y, Ahn J-H. 2012. Production of a novel quercetin glycoside through metabolic engineering of Escherichia coli. Appl. Env. Microbiol. 78: 4256-4262. https://doi.org/10.1128/AEM.00275-12
  19. Gibson J, Dispensa M, Fogg GC, Evans DT, Harwood CS. 1994. 4-Hydroxybenzoate-coenzyme A ligase from Rhodopseudomonas palustris: purification, gene sequence, and role in anaerobic degradation. J. Bacteriol. 176: 634-641 https://doi.org/10.1128/jb.176.3.634-641.1994
  20. Lutke-Eversloh T, Stephanopoulos G. 2007. L-Tyrosine production by deregulated strains of Escherichia coli. Appl. Microbiol. Biotechnol. 75: 103-110. https://doi.org/10.1007/s00253-006-0792-9
  21. Ikeda M. 2006. Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl. Microbiol. Biotechnol. 69: 615-626 https://doi.org/10.1007/s00253-005-0252-y
  22. Noda S, Kondo A. 2017. Recent advances in microbial production of aromatic chemicals and derivatives. Trends Biotechnol. 35: 785-796. https://doi.org/10.1016/j.tibtech.2017.05.006
  23. Peng M, Gao Y, Chen W, Wang W, Shen S, Shi J, et al. 2016. Evolutionarily distinct BAHD N-acyltransferases are responsible for natural variation of aromatic amine conjugates in rice. Plant Cell 28: 1533-1550. https://doi.org/10.1105/tpc.16.00265
  24. Pittard AJ, Davidson BE. 1991. TyrR protein of Escherichia coli and its role as repressor and activator. Mol. Microbiol. 5: 1585-1592. https://doi.org/10.1111/j.1365-2958.1991.tb01904.x
  25. Argaet VP, Wilson TJ, Davidson BE. 1994. Purification of the Escherichia coli regulatory protein TyrR and analysis of its interactions with ATP, tyrosine, phenylalanine, and tryptophan. J. Biol. Chem. 269: 5171-5178. https://doi.org/10.1016/S0021-9258(17)37671-8

Cited by

  1. Synthesis of 4-Hydroxybenzoic Acid Derivatives in Escherichia coli vol.68, pp.36, 2019, https://doi.org/10.1021/acs.jafc.0c03149