DOI QR코드

DOI QR Code

Effects of Glucagon-Like Peptide-2-Expressing Saccharomyces cerevisiae Not Different from Empty Vector

  • Zhong, Xi (Intensive Care Unit, West China Hospital, Sichuan University) ;
  • Liang, Guopeng (Intensive Care Unit, West China Hospital, Sichuan University) ;
  • Cao, Lili (Medical School, Chengdu University) ;
  • Qiao, Qi (Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center) ;
  • Hu, Zhi (Intensive Care Unit, West China Hospital, Sichuan University) ;
  • Fu, Min (Intensive Care Unit, West China Hospital, Sichuan University) ;
  • Bo, Hong (Intensive Care Unit, West China Hospital, Sichuan University) ;
  • Wu, Qin (Intensive Care Unit, West China Hospital, Sichuan University) ;
  • Liang, Guanlin (Intensive Care Unit, West China Hospital, Sichuan University) ;
  • Zhang, Zhongwei (Intensive Care Unit, West China Hospital, Sichuan University) ;
  • Zhou, Lin (Shenzhen Premix INVE Nutrition Co., Ltd.)
  • Received : 2019.07.03
  • Accepted : 2019.08.14
  • Published : 2019.10.28

Abstract

Saccharomyces cerevisiae (S. cerevisiae) and glucagon-like peptide-2 (GLP-2) have been employed to improve the intestinal development of weaned animals. The goal of this study was to determine whether either exogenous S. cerevisiae or GLP-2 elicits major effects on fecal microbiotas and cytokine responses in weaned piglets. Ninety-six piglets weaned at 26 days were assigned to one of four groups: 1) Basal diet (Control), 2) empty vector-harboring S. cerevisiae (EV-SC), 3) GLP-2-expressing S. cerevisiae (GLP2-SC), and 4) recombinant human GLP-2 (rh-GLP2). At the start of the post-weaning period (day 0), and at day 28, fecal samples were collected to assess the bacterial communities via sequencing the V1-V2 region of the 16S-rRNA gene, and piglets' blood was also sampled to measure cytokine responses (i.e., IL-$1{\beta}$, TNF-${\alpha}$, and IFN-${\gamma}$). This study revealed that, on the one hand, although S. cerevisiae supplementation did not significantly alter the growth of weaned piglets, it induced increases in the relative abundances of two core genera (Ruminococcaceae_norank and Erysipelotrichaceae_norank) and decreases in the relative abundances of two other core genera (Lachnospiraceae_norank and Clostridiale_norank) and cytokine levels (IL-$1{\beta}$ and TNF-${\alpha}$) (p < 0.05, Control vs EV-SC; p < 0.05, rh-GLP2 vs GLP2-SC). On the other hand, GLP-2 supplementation had no significant influence on fecal bacterial communities and cytokine levels, but it produced better body weight and average daily gain (p < 0.05, Control vs EV-SC; p < 0.05, rh-GLP2 vs GLP2-SC). Therefore, altered fecal microbiotas and cytokine response effects in weaned piglets were due to S. cerevisiae rather than GLP-2.

Keywords

References

  1. Lalles J-P, Bosi P, Smidt H, Stokes CR. 2007. Weaning-a challenge to gut physiologists. Livest. Sci. 108: 82-93. https://doi.org/10.1016/j.livsci.2007.01.091
  2. Wang S, Guo C, Zhou L, Zhang Z, Huang Y, Yang J, et al. 2015. Comparison of the biological activities of Saccharomyces cerevisiae-expressed intracellular EGF, extracellular EGF, and tagged EGF in early-weaned pigs. Appl. Microbiol. Biotechnol. 99: 7125-7135. https://doi.org/10.1007/s00253-015-6468-6
  3. Van der Meulen J, Koopmans S, Dekker R, Hoogendoorn A. 2010. Increasing weaning age of piglets from 4 to 7 weeks reduces stress, increases post-weaning feed intake but does not improve intestinal functionality. Animal 4: 1653-1661. https://doi.org/10.1017/S1751731110001011
  4. Thymann T, Huerou-Luron L, Petersen Y, Hedemann MS, Elinf J, Jensen BB, et al. 2014. Glucagon-like peptide 2 treatment may improve intestinal adaptation during weaning. J. Anim. Sci. 92: 2070-2079. https://doi.org/10.2527/jas.2013-7015
  5. Zhang Z, Wu X, Cao L, Zhong Z, Zhou Y. 2016. Generation of glucagon-like peptide-2-expressing Saccharomyces cerevisiae and its improvement of the intestinal health of weaned rats. Microb. Biotechnol. 9: 846-857. https://doi.org/10.1111/1751-7915.12412
  6. Boudry G, Peron V, Le Huerou-Luron I, Lalles JP, Seve B. 2004. Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. J. Nutr. 134: 2256-2262. https://doi.org/10.1093/jn/134.9.2256
  7. Wang S, Wang B, He H, Sun A, Guo C. 2018. A new set of reference housekeeping genes for the normalization RTqPCR data from the intestine of piglets during weaning. PLoS One 13: e0204583. https://doi.org/10.1371/journal.pone.0204583
  8. Qi KK, Wu J, Deng B, Li YM, Xu ZW. 2015. PEGylated porcine glucagon-like peptide-2 improved the intestinal digestive function and prevented inflammation of weaning piglets challenged with LPS. Animal 9: 1481-1489. https://doi.org/10.1017/S1751731115000749
  9. Pedersen NB, Hjollund KR, Johnsen AH, Orskov C, Rosenkilde MM, Hartmann B, et al. 2008. Porcine glucagonlike peptide-2: structure, signaling, metabolism and effects. Regul. Pept. 146: 310-320. https://doi.org/10.1016/j.regpep.2007.11.003
  10. Romanos MA, Scorer CA, Clare JJ. 1992. Foreign gene expression in yeast: a review. Yeast 8: 423-488. https://doi.org/10.1002/yea.320080602
  11. Wang S, Zhou L, Chen H, Cao Y, Zhang Z, Yang J, et al. 2015. Analysis of the biological activities of Saccharomyces cerevisiae expressing intracellular EGF, extracellular EGF, and tagged EGF in early-weaned rats. Appl. Microbiol. Biotechnol. 99: 2179-2189. https://doi.org/10.1007/s00253-014-6044-5
  12. Cheung QC, Yuan Z, Dyce PW, Wu D, DeLange K, Li J. 2009. Generation of epidermal growth factor-expressing Lactococcus lactis and its enhancement on intestinal development and growth of early-weaned mice. Am. J. Clin. Nutr. 89: 871-879. https://doi.org/10.3945/ajcn.2008.27073
  13. Council NR. 2012. Nutrient requirements of swine: National Academies Press.
  14. Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, Caporaso JG, et al. 2012. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J. 6: 94-103. https://doi.org/10.1038/ismej.2011.82
  15. Zhu Y, Lin X, Zhao F, Shi X, Li H, Li Y, et al. 2015. Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Sci. Rep. 5: 15220. https://doi.org/10.1038/srep15220
  16. Wang S, Guo C, Zhou L, Zhong Z, Zhu W, Huang Y, et al. 2016. Effects of dietary supplementation with epidermal growth factor-expressing Saccharomyces cerevisiae on duodenal development in weaned piglets. Br. J. Nutr. 115: 1509-1520. https://doi.org/10.1017/S0007114516000738
  17. Jiang Yi, Jia Gang, Hui Ming Di, Chen Xiao Ling, Li Hua, Wang Kang Ning. 2012. Effects of glucagon-like peptide-2 supplementation on expression of intestinal epithelial tight junction protein related genes in weaner piglets in vitro. Chinese. J. Anim. Nutr. 9: 022.
  18. Qi K, Sun Y, Wan J, Deng B, Men X, Wu J, et al. 2017. Effect of porcine glucagon-like peptides-2 on tight junction in GLP-2R+ IPEC-J2 cell through the PI3k/Akt/mTOR/p70S6K signalling pathway. J. Anim. Physiol. Anim. Nutr. 101: 1242-1248. https://doi.org/10.1111/jpn.12644
  19. Deng QH, Jia G, Zhao H, Chen ZL, Chen XL, Liu GM, et al. 2016. The prolonged effect of glucagon-like peptide 2 pretreatment on growth performance and intestinal development of weaned piglets. J. Anim. Sci. Biotechnol. 7: 28. https://doi.org/10.1186/s40104-016-0087-7
  20. Connor EE, Evock-Clover C, Wall E, Baldwin R, Santin-Duran M, Elsasser T, et al. 2016. Glucagon-like peptide 2 and its beneficial effects on gut function and health in production animals. Domest. Anim. Endocrinol. 56: S56-S65. https://doi.org/10.1016/j.domaniend.2015.11.008
  21. Zhang Z, Cao L, Zhou Y, Wang S, Zhou L. 2016. Analysis of the duodenal microbiotas of weaned piglet fed with epidermal growth factor-expressed Saccharomyces cerevisiae. BMC. Microbiol. 16: 166. https://doi.org/10.1186/s12866-016-0783-7
  22. Levesque CL, Akhtar N, Huynh E, Walk C, Wilcock P, Zhang Z, et al. 2018. The impact of epidermal growth factor supernatant on pig performance and ileal microbiota. Translation. Animal. Sci. 2: 184-194. https://doi.org/10.1093/tas/txy019
  23. Kiarie E, Bhandari S, Scott M, Krause D, Nyachoti C. 2011. Growth performance and gastrointestinal microbial ecology responses of piglets receiving fermentation products after an oral challenge with (K88). J. Anim. Sci. 89: 1062-1078. https://doi.org/10.2527/jas.2010-3424
  24. Trckova M, Faldyna M, Alexa P, Zajacova ZS, Gopfert E, Kumprechtova D, et al. 2014. The effects of live yeast on postweaning diarrhea, immune response, and growth performance in weaned piglets. J. Anim. Sci. 92: 767-774. https://doi.org/10.2527/jas.2013-6793
  25. Nguyen T, Fleet G, Rogers P. 1998. Composition of the cell walls of several yeast species. Appl. Microbiol. Biotechnol. 50: 206-212. https://doi.org/10.1007/s002530051278
  26. Spring P, Wenk C, Dawson K, Newman K. 2000. The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult. Sci. 79: 205-211. https://doi.org/10.1093/ps/79.2.205
  27. Li J, Kim IH. 2014. Effects of Saccharomyces cerevisiae cell wall extract and poplar propolis ethanol extract supplementation on growth performance, digestibility, blood profile, fecal microbiota and fecal noxious gas emissions in growing pigs. Anim. Sci. J. 85: 698-705. https://doi.org/10.1111/asj.12195
  28. McKay D, Baird A. 1999. Cytokine regulation of epithelial permeability and ion transport. Gut 44: 283-289. https://doi.org/10.1136/gut.44.2.283
  29. Jiang Z, Wei S, Wang Z, Zhu C, Hu S, Zheng C, et al. 2015. Effects of different forms of yeast Saccharomyces cerevisiae on growth performance, intestinal development, and systemic immunity in early-weaned piglets. J. Anim. Sci. Biotechnol. 6: 47. https://doi.org/10.1186/s40104-015-0046-8
  30. Zhong X, Wang S, Zhang Z, Cao L, Zhou L, Sun A, et al. 2019. Microbial-driven butyrate regulates jejunal homeostasis in piglets during the weaning stage. Front. Microbiol. 9: 3335. https://doi.org/10.3389/fmicb.2018.03335
  31. Li J, Xing J, Li D, Wang X, Zhao L, Lv S, et al. 2005. Effects of $\beta$-glucan extracted from Saccharomyces cerevisiae on humoral and cellular immunity in weaned piglets. Arch. Anim. Nutr. 59: 303-312. https://doi.org/10.1080/17450390500247832
  32. Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, et al. 2014. Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J. Infect. Dis. 211: 19-27. https://doi.org/10.1093/infdis/jiu409
  33. Kaakoush NO. 2015. Insights into the role of Erysipelotrichaceae in the human host. Front. Cell. Infect. Microbiol. 5: 84. https://doi.org/10.3389/fcimb.2015.00084
  34. Jiang W, Wu N, Wang X, Chi Y, Zhang Y, Qiu X, et al. 2015. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci. Rep. 5: 8096. https://doi.org/10.1038/srep08096
  35. Xu J, Chen X, Yu S, Su Y, Zhu W. 2016. Effects of e arly intervention with sodium butyrate on gut microbiota and the expression of inflammatory cytokines in neonatal piglets. PLoS One 11: e0162461. https://doi.org/10.1371/journal.pone.0162461
  36. Gosalbes MJ, Durban A, Pignatelli M, Abellan JJ, Jimenez-Hernandez N, Perez-Cobas AE, et al. 2011. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6: e17447. https://doi.org/10.1371/journal.pone.0017447
  37. Meehan CJ, Beiko RG. 2014. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome. Biol. Evol. 6: 703-713. https://doi.org/10.1093/gbe/evu050
  38. Li M, Monaco MH, Wang M, Comstock SS, Kuhlenschmidt TB, Fahey GC, et al. 2014. Human milk oligosaccharides shorten rotavirus-induced diarrhea and modulate piglet mucosal immunity and colonic microbiota. ISME J. 8: 1609-1620. https://doi.org/10.1038/ismej.2014.10