References
- Lalles J-P, Bosi P, Smidt H, Stokes CR. 2007. Weaning-a challenge to gut physiologists. Livest. Sci. 108: 82-93. https://doi.org/10.1016/j.livsci.2007.01.091
- Wang S, Guo C, Zhou L, Zhang Z, Huang Y, Yang J, et al. 2015. Comparison of the biological activities of Saccharomyces cerevisiae-expressed intracellular EGF, extracellular EGF, and tagged EGF in early-weaned pigs. Appl. Microbiol. Biotechnol. 99: 7125-7135. https://doi.org/10.1007/s00253-015-6468-6
- Van der Meulen J, Koopmans S, Dekker R, Hoogendoorn A. 2010. Increasing weaning age of piglets from 4 to 7 weeks reduces stress, increases post-weaning feed intake but does not improve intestinal functionality. Animal 4: 1653-1661. https://doi.org/10.1017/S1751731110001011
- Thymann T, Huerou-Luron L, Petersen Y, Hedemann MS, Elinf J, Jensen BB, et al. 2014. Glucagon-like peptide 2 treatment may improve intestinal adaptation during weaning. J. Anim. Sci. 92: 2070-2079. https://doi.org/10.2527/jas.2013-7015
- Zhang Z, Wu X, Cao L, Zhong Z, Zhou Y. 2016. Generation of glucagon-like peptide-2-expressing Saccharomyces cerevisiae and its improvement of the intestinal health of weaned rats. Microb. Biotechnol. 9: 846-857. https://doi.org/10.1111/1751-7915.12412
- Boudry G, Peron V, Le Huerou-Luron I, Lalles JP, Seve B. 2004. Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. J. Nutr. 134: 2256-2262. https://doi.org/10.1093/jn/134.9.2256
- Wang S, Wang B, He H, Sun A, Guo C. 2018. A new set of reference housekeeping genes for the normalization RTqPCR data from the intestine of piglets during weaning. PLoS One 13: e0204583. https://doi.org/10.1371/journal.pone.0204583
- Qi KK, Wu J, Deng B, Li YM, Xu ZW. 2015. PEGylated porcine glucagon-like peptide-2 improved the intestinal digestive function and prevented inflammation of weaning piglets challenged with LPS. Animal 9: 1481-1489. https://doi.org/10.1017/S1751731115000749
- Pedersen NB, Hjollund KR, Johnsen AH, Orskov C, Rosenkilde MM, Hartmann B, et al. 2008. Porcine glucagonlike peptide-2: structure, signaling, metabolism and effects. Regul. Pept. 146: 310-320. https://doi.org/10.1016/j.regpep.2007.11.003
- Romanos MA, Scorer CA, Clare JJ. 1992. Foreign gene expression in yeast: a review. Yeast 8: 423-488. https://doi.org/10.1002/yea.320080602
- Wang S, Zhou L, Chen H, Cao Y, Zhang Z, Yang J, et al. 2015. Analysis of the biological activities of Saccharomyces cerevisiae expressing intracellular EGF, extracellular EGF, and tagged EGF in early-weaned rats. Appl. Microbiol. Biotechnol. 99: 2179-2189. https://doi.org/10.1007/s00253-014-6044-5
- Cheung QC, Yuan Z, Dyce PW, Wu D, DeLange K, Li J. 2009. Generation of epidermal growth factor-expressing Lactococcus lactis and its enhancement on intestinal development and growth of early-weaned mice. Am. J. Clin. Nutr. 89: 871-879. https://doi.org/10.3945/ajcn.2008.27073
- Council NR. 2012. Nutrient requirements of swine: National Academies Press.
- Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, Caporaso JG, et al. 2012. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J. 6: 94-103. https://doi.org/10.1038/ismej.2011.82
- Zhu Y, Lin X, Zhao F, Shi X, Li H, Li Y, et al. 2015. Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Sci. Rep. 5: 15220. https://doi.org/10.1038/srep15220
- Wang S, Guo C, Zhou L, Zhong Z, Zhu W, Huang Y, et al. 2016. Effects of dietary supplementation with epidermal growth factor-expressing Saccharomyces cerevisiae on duodenal development in weaned piglets. Br. J. Nutr. 115: 1509-1520. https://doi.org/10.1017/S0007114516000738
- Jiang Yi, Jia Gang, Hui Ming Di, Chen Xiao Ling, Li Hua, Wang Kang Ning. 2012. Effects of glucagon-like peptide-2 supplementation on expression of intestinal epithelial tight junction protein related genes in weaner piglets in vitro. Chinese. J. Anim. Nutr. 9: 022.
- Qi K, Sun Y, Wan J, Deng B, Men X, Wu J, et al. 2017. Effect of porcine glucagon-like peptides-2 on tight junction in GLP-2R+ IPEC-J2 cell through the PI3k/Akt/mTOR/p70S6K signalling pathway. J. Anim. Physiol. Anim. Nutr. 101: 1242-1248. https://doi.org/10.1111/jpn.12644
- Deng QH, Jia G, Zhao H, Chen ZL, Chen XL, Liu GM, et al. 2016. The prolonged effect of glucagon-like peptide 2 pretreatment on growth performance and intestinal development of weaned piglets. J. Anim. Sci. Biotechnol. 7: 28. https://doi.org/10.1186/s40104-016-0087-7
- Connor EE, Evock-Clover C, Wall E, Baldwin R, Santin-Duran M, Elsasser T, et al. 2016. Glucagon-like peptide 2 and its beneficial effects on gut function and health in production animals. Domest. Anim. Endocrinol. 56: S56-S65. https://doi.org/10.1016/j.domaniend.2015.11.008
- Zhang Z, Cao L, Zhou Y, Wang S, Zhou L. 2016. Analysis of the duodenal microbiotas of weaned piglet fed with epidermal growth factor-expressed Saccharomyces cerevisiae. BMC. Microbiol. 16: 166. https://doi.org/10.1186/s12866-016-0783-7
- Levesque CL, Akhtar N, Huynh E, Walk C, Wilcock P, Zhang Z, et al. 2018. The impact of epidermal growth factor supernatant on pig performance and ileal microbiota. Translation. Animal. Sci. 2: 184-194. https://doi.org/10.1093/tas/txy019
- Kiarie E, Bhandari S, Scott M, Krause D, Nyachoti C. 2011. Growth performance and gastrointestinal microbial ecology responses of piglets receiving fermentation products after an oral challenge with (K88). J. Anim. Sci. 89: 1062-1078. https://doi.org/10.2527/jas.2010-3424
- Trckova M, Faldyna M, Alexa P, Zajacova ZS, Gopfert E, Kumprechtova D, et al. 2014. The effects of live yeast on postweaning diarrhea, immune response, and growth performance in weaned piglets. J. Anim. Sci. 92: 767-774. https://doi.org/10.2527/jas.2013-6793
- Nguyen T, Fleet G, Rogers P. 1998. Composition of the cell walls of several yeast species. Appl. Microbiol. Biotechnol. 50: 206-212. https://doi.org/10.1007/s002530051278
- Spring P, Wenk C, Dawson K, Newman K. 2000. The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult. Sci. 79: 205-211. https://doi.org/10.1093/ps/79.2.205
- Li J, Kim IH. 2014. Effects of Saccharomyces cerevisiae cell wall extract and poplar propolis ethanol extract supplementation on growth performance, digestibility, blood profile, fecal microbiota and fecal noxious gas emissions in growing pigs. Anim. Sci. J. 85: 698-705. https://doi.org/10.1111/asj.12195
- McKay D, Baird A. 1999. Cytokine regulation of epithelial permeability and ion transport. Gut 44: 283-289. https://doi.org/10.1136/gut.44.2.283
- Jiang Z, Wei S, Wang Z, Zhu C, Hu S, Zheng C, et al. 2015. Effects of different forms of yeast Saccharomyces cerevisiae on growth performance, intestinal development, and systemic immunity in early-weaned piglets. J. Anim. Sci. Biotechnol. 6: 47. https://doi.org/10.1186/s40104-015-0046-8
- Zhong X, Wang S, Zhang Z, Cao L, Zhou L, Sun A, et al. 2019. Microbial-driven butyrate regulates jejunal homeostasis in piglets during the weaning stage. Front. Microbiol. 9: 3335. https://doi.org/10.3389/fmicb.2018.03335
-
Li J, Xing J, Li D, Wang X, Zhao L, Lv S, et al. 2005. Effects of
$\beta$ -glucan extracted from Saccharomyces cerevisiae on humoral and cellular immunity in weaned piglets. Arch. Anim. Nutr. 59: 303-312. https://doi.org/10.1080/17450390500247832 - Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, et al. 2014. Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J. Infect. Dis. 211: 19-27. https://doi.org/10.1093/infdis/jiu409
- Kaakoush NO. 2015. Insights into the role of Erysipelotrichaceae in the human host. Front. Cell. Infect. Microbiol. 5: 84. https://doi.org/10.3389/fcimb.2015.00084
- Jiang W, Wu N, Wang X, Chi Y, Zhang Y, Qiu X, et al. 2015. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci. Rep. 5: 8096. https://doi.org/10.1038/srep08096
- Xu J, Chen X, Yu S, Su Y, Zhu W. 2016. Effects of e arly intervention with sodium butyrate on gut microbiota and the expression of inflammatory cytokines in neonatal piglets. PLoS One 11: e0162461. https://doi.org/10.1371/journal.pone.0162461
- Gosalbes MJ, Durban A, Pignatelli M, Abellan JJ, Jimenez-Hernandez N, Perez-Cobas AE, et al. 2011. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6: e17447. https://doi.org/10.1371/journal.pone.0017447
- Meehan CJ, Beiko RG. 2014. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome. Biol. Evol. 6: 703-713. https://doi.org/10.1093/gbe/evu050
- Li M, Monaco MH, Wang M, Comstock SS, Kuhlenschmidt TB, Fahey GC, et al. 2014. Human milk oligosaccharides shorten rotavirus-induced diarrhea and modulate piglet mucosal immunity and colonic microbiota. ISME J. 8: 1609-1620. https://doi.org/10.1038/ismej.2014.10