DOI QR코드

DOI QR Code

Biochemical and Biodiversity Insights into Heavy Metal Ion-Responsive Transcription Regulators for Synthetic Biological Heavy Metal Sensors

  • Jung, Jaejoon (Department of Applied Research, National Marine Biodiversity Institute of Korea) ;
  • Lee, Sang Jun (Department of Systems Biotechnology, and Institute of Microbiomics, Chung-Ang University)
  • Received : 2019.08.02
  • Accepted : 2019.09.19
  • Published : 2019.10.28

Abstract

To adapt to environmental changes and to maintain cellular homeostasis, microorganisms adjust the intracellular concentrations of biochemical compounds, including metal ions; these are essential for the catalytic function of many enzymes in cells, but excessive amounts of essential metals and heavy metals cause cellular damage. Metal-responsive transcriptional regulators play pivotal roles in metal uptake, pumping out, sequestration, and oxidation or reduction to a less toxic status via regulating the expression of the detoxification-related genes. The sensory and regulatory functions of the metalloregulators have made them as attractive biological parts for synthetic biology, and the exceptional sensitivity and selectivity of metalloregulators toward metal ions have been used in heavy metal biosensors to cope with prevalent heavy metal contamination. Due to their importance, substantial efforts have been made to characterize heavy metal-responsive transcriptional regulators and to develop heavy metal-sensing biosensors. In this review, we summarize the biochemical data for the two major metalloregulator families, SmtB/ArsR and MerR, to describe their metal-binding sites, specific chelating chemistry, and conformational changes. Based on our understanding of the regulatory mechanisms, previously developed metal biosensors are examined to point out their limitations, such as high background noise and a lack of well-characterized biological parts. We discuss several strategies to improve the functionality of the metal biosensors, such as reducing the background noise and amplifying the output signal. From the perspective of making heavy metal biosensors, we suggest that the characterization of novel metalloregulators and the fabrication of exquisitely designed genetic circuits will be required.

Keywords

References

  1. Reyes-Caballero H, Campanello GC, Giedroc DP. 2011. Metalloregulatory proteins: metal selectivity and allosteric switching. Biophys. Chem. 156: 103-114. https://doi.org/10.1016/j.bpc.2011.03.010
  2. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM. 2008. Metal ions in biological catalysis: from enzyme databases to general principles. J. Biol. Inorg. Chem. 13: 1205-1218. https://doi.org/10.1007/s00775-008-0404-5
  3. Arredondo M, Nunez MT. 2005. Iron and copper metabolism. Mol. Aspects Med. 26: 313-327. https://doi.org/10.1016/j.mam.2005.07.010
  4. Solioz M, Odermatt A, Krapf R. 1994. Copper pumping ATPases: common concepts in bacteria and man. FEBS Lett. 346: 44-47. https://doi.org/10.1016/0014-5793(94)00316-5
  5. Ferguson AD, Deisenhofer J. 2004. Metal import through microbial membranes. Cell 116: 15-24. https://doi.org/10.1016/S0092-8674(03)01030-4
  6. Capdevila DA, Edmonds KA, Giedroc DP. 2017. Metallochaperones and metalloregulation in bacteria. Essays Biochem. 61: 177-200. https://doi.org/10.1042/EBC20160076
  7. Lloyd JR, Lovley DR. 2001. Microbial detoxification of metals and radionuclides. Curr. Opin. Biotechnol. 12: 248-253. https://doi.org/10.1016/S0958-1669(00)00207-X
  8. Blindauer CA, Harrison MD, Robinson AK, Parkinson JA, Bowness PW, Sadler PJ, et al. 2002. Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol. Microbiol. 45: 1421-1432. https://doi.org/10.1046/j.1365-2958.2002.03109.x
  9. Jacobsen FE, Kazmierczak KM, Lisher JP, Winkler ME, Giedroc DP. 2011. Interplay between manganese and zinc homeostasis in the human pathogen Streptococcus pneumoniae. Metallomics 3: 38-41. https://doi.org/10.1039/C0MT00050G
  10. Outten CE, O'Halloran TV. 2001. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292: 2488-2492. https://doi.org/10.1126/science.1060331
  11. Irving H, Williams RJP. 1948. Order of stability of metal complexes. Nature 162: 746-747. https://doi.org/10.1038/162746a0
  12. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7: 60-72. https://doi.org/10.2478/intox-2014-0009
  13. Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC, et al. 2000. Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ. Health Perspect. 108: 393-397. https://doi.org/10.1289/ehp.00108393
  14. Williams PN, Islam MR, Adomako EE, Raab A, Hossain SA, Zhu YG, et al. 2006. Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ. Sci. Technol. 40: 4903-4908. https://doi.org/10.1021/es060222i
  15. Williams PN, Lei M, Sun G, Huang Q, Lu Y, Deacon C, et al. 2009. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environ. Sci. Technol. 43: 637-642. https://doi.org/10.1021/es802412r
  16. Kaur H, Kumar R, Babu JN, Mittal S. 2015. Advances in arsenic biosensor development - A comprehensive review. Biosens. Bioelectron. 63: 533-545. https://doi.org/10.1016/j.bios.2014.08.003
  17. Baumann B, van der Meer JR. 2007. Analysis of bioavailable arsenic in rice with whole cell living bioreporter bacteria. J. Agric. Food Chem. 55: 2115-2120. https://doi.org/10.1021/jf0631676
  18. Waldron KJ, Rutherford JC, Ford D, Robinson NJ. 2009. Metalloproteins and metal sensing. Nature 460: 823-830. https://doi.org/10.1038/nature08300
  19. Ma Z, Jacobsen FE, Giedroc DP. 2009. Coordination chemistry of bacterial metal transport and sensing. Chem. Rev. 109: 4644-4681. https://doi.org/10.1021/cr900077w
  20. Saha RP, Samanta S, Patra S, Sarkar D, Saha A, Singh MK. 2017. Metal homeostasis in bacteria: the role of ArsR-SmtB family of transcriptional repressors in combating varying metal concentrations in the environment. BioMetals 30: 459-503. https://doi.org/10.1007/s10534-017-0020-3
  21. Wu J, Rosen BP. 1993. Metalloregulated expression of the ars operon. J. Biol. Chem. 268: 52-58. https://doi.org/10.1016/S0021-9258(18)54113-2
  22. Ye J, Kandegedara A, Martin P, Rosen BP. 2005. Crystal structure of the Staphylococcus aureus pI258 CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor. J. Bacteriol. 187: 4214-4221. https://doi.org/10.1128/JB.187.12.4214-4221.2005
  23. Reyes-Caballero H, Lee CW, Giedroc DP. 2011. Mycobacterium tuberculosis NmtR harbors a nickel sensing site with parallels to Escherichia coli RcnR. Biochemistry 50: 7941-7952. https://doi.org/10.1021/bi200737a
  24. Liu T, Nakashima S, Hirose K, Shibasaka M, Katsuhara M, Ezaki B, et al. 2004. A novel cyanobacterial SmtB/ArsR family repressor regulates the expression of a CPx-ATPase and a metallothionein in response to both Cu(I)/Ag(I) and Zn(II)/Cd(II). J. Biol. Chem. 279: 17810-17818. https://doi.org/10.1074/jbc.M310560200
  25. Pennella MA, Shokes JE, Cosper NJ, Scott RA, Giedroc DP. 2003. Structural elements of metal selectivity in metal sensor proteins. Proc. Natl. Acad. Sci. USA 100: 3713-3718. https://doi.org/10.1073/pnas.0636943100
  26. Cook WJ, Kar SR, Taylor KB, Hall LM. 1998. Crystal structure of the cyanobacterial metallothionein repressor SmtB: a model for metalloregulatory proteins. J. Mol. Biol. 275: 337-346. https://doi.org/10.1006/jmbi.1997.1443
  27. VanZile ML, Chen X, Giedroc DP. 2002. Structural characterization of distinct ${\alpha}3N$ and ${\alpha}5$ metal sites in the cyanobacterial zinc sensor SmtB. Biochemistry 41: 9765-9775. https://doi.org/10.1021/bi0201771
  28. Eicken C, Pennella MA, Chen X, Koshlap KM, VanZile ML, Sacchettini JC, et al. 2003. A metal-ligand-mediated intersubunit allosteric switch in related SmtB/ArsR zinc sensor proteins. J. Mol. Biol. 333: 683-695. https://doi.org/10.1016/j.jmb.2003.09.007
  29. Fernandez M, Morel B, Ramos JL, Krell T. 2016. Paralogous regulators ArsR1 and ArsR2 of Pseudomonas putida KT2440 as a basis for arsenic biosensor development. Appl. Environ. Microbiol. 82: 4133-4144. https://doi.org/10.1128/AEM.00606-16
  30. Moinier D, Slyemi D, Byrne D, Lignon S, Lebrun R, Talla E, et al. 2014. An ArsR/SmtB family member is involved in the regulation by arsenic of the arsenite oxidase operon in Thiomonas arsenitoxydans. Appl. Environ. Microbiol. 80: 6413-6426. https://doi.org/10.1128/AEM.01771-14
  31. Slyemi D, Moinier D, Talla E, Bonnefoy V. 2013. Organization and regulation of the arsenite oxidase operon of the moderately acidophilic and facultative chemoautotrophic Thiomonas arsenitoxydans. Extremophiles 17: 911-920. https://doi.org/10.1007/s00792-013-0573-1
  32. Busenlehner LS, Weng TC, Penner-Hahn JE, Giedroc DP. 2002. Elucidation of primary (${\alpha}3N$) and vestigial (${\alpha}5$) heavy metal-binding sites in Staphylococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins. J. Mol. Biol. 319: 685-701. https://doi.org/10.1016/S0022-2836(02)00299-1
  33. Kandegedara A, Thiyagarajan S, Kondapalli KC, Stemmler TL, Rosen BP. 2009. Role of bound Zn(II) in the C adC Cd(II)/Pb(II)/Zn(II)-responsive repressor. J. Biol. Chem. 284: 14958-14965. https://doi.org/10.1074/jbc.M809179200
  34. Sun Y, Wong MD, Rosen BP. 2002. Both metal binding sites in the h omodimer a re r equ ired f or m etalloregulation by the CadC repressor. Mol. Microbiol. 44: 1323-1329. https://doi.org/10.1046/j.1365-2958.2002.02961.x
  35. Turner JS, Glands PD, Samson ACR, Robinson NJ. 1996. $Zn^{2+}$-sensing by the cyanobacterial metallothionein repressor SmtB: different motifs mediate metal-induced protein-DNA dissociation. Nucleic Acids Res. 24: 3714-3721. https://doi.org/10.1093/nar/24.19.3714
  36. Busenlehner LS, Cosper NJ, Scott RA, Rosen BP, Wong MD, Giedroc DP. 2001. Spectroscopic properties of the metalloregulatory Cd (II) and Pb (II) sites of S. aureus pI258 CadC. Biochemistry 40: 4426-4436. https://doi.org/10.1021/bi010006g
  37. Arunkumar AI, Campanello GC, Giedroc DP. 2009. Solution structure of a paradigm ArsR family zinc sensor in the DNA-bound state. Proc. Natl. Acad. Sci. USA 106: 18177-18182. https://doi.org/10.1073/pnas.0905558106
  38. Zhang APP, Pigli YZ, Rice PA. 2010. Structure of the LexA-DNA complex and implications for SOS box measurement. Nature 466: 883. https://doi.org/10.1038/nature09200
  39. Lewis M, Chang G, Horton NC, Kercher MA, Pace HC, Schumacher MA, et al. 1996. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271(5253): 1247-1254. https://doi.org/10.1126/science.271.5253.1247
  40. Wang D, Huang S, Liu P, Liu X, He Y, Chen W, et al. 2016. Structural analysis of the Hg(II)-regulatory protein Tn501 MerR from Pseudomonas aeruginosa. Sci. Rep. 6: 33391. https://doi.org/10.1038/srep33391
  41. Gajiwala KS, Burley SK. 2000. Winged helix proteins. Curr. Opin. Struct. Biol. 10: 110-116. https://doi.org/10.1016/S0959-440X(99)00057-3
  42. Thelwell C, Robinson NJ, Turner-Cavet JS. 1998. An SmtBlike repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proc. Natl. Acad. Sci. USA 95: 10728-10733. https://doi.org/10.1073/pnas.95.18.10728
  43. Cavet JS, Meng W, Pennella MA, Appelhoff RJ, Giedroc DP, Robinson NJ. 2002. A nickel-cobalt-sensing ArsR-SmtB family repressor contributions of cytosol and effector binding sites to metal selectivity. J. Biol. Chem. 277: 38441-38448. https://doi.org/10.1074/jbc.M207677200
  44. Kuroda M, Hayashi H, Ohta T. 1999. Chromosomedetermined zinc-responsible operon czr in Staphylococcus aureus strain 912. Microbiol. Immunol. 43: 115-125. https://doi.org/10.1111/j.1348-0421.1999.tb02382.x
  45. Singh VK, Xiong A, Usgaard TR, Chakrabarti S, Deora R, Misra TK, et al. 1999. ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus. Mol. Microbiol. 33: 200-207. https://doi.org/10.1046/j.1365-2958.1999.01466.x
  46. Murphy JN, Saltikov CW. 2009. The ArsR repressor mediates arsenite-dependent regulation of arsenate respiration and detoxification operons of Shewanella sp. strain ANA-3. J. Bacteriol. 191: 6722-6731. https://doi.org/10.1128/JB.00801-09
  47. Antonucci I, Gallo G, Limauro D, Contursi P, Ribeiro AL, Blesa A, et al. 2017. An ArsR/SmtB family member regulates arsenic resistance genes unusually arranged in Thermus thermophilus HB27. Microb. Biotechnol. 10: 1690-1701. https://doi.org/10.1111/1751-7915.12761
  48. Gao C, Yang M, He Z-G. 2012. Characterization of a novel ArsR-like regulator encoded by Rv2034 in Mycobacterium tuberculosis. PLoS One 7: e36255. https://doi.org/10.1371/journal.pone.0036255
  49. Blundell MR, Wild DG. 1969. Inhibition of bacterial growth by metal salts. A survey of effects on the synthesis of ribonucleic acid and protein. Biochem. J. 115: 207-212. https://doi.org/10.1042/bj1150207
  50. Gupta A, Whitton BA, Morby AP, Huckle JW, Robinson NJ. 1992. Amplification and rearrangement of a prokaryotic metallothionein locus smt in Synechococcus PCC 6301 selected for tolerance to cadmium. Proc. B Biol. Sci. 248: 273-281. https://doi.org/10.1098/rspb.1992.0072
  51. Li J, Mandal G, Rosen BP. 2016. Expression of arsenic resistance genes in the obligate anaerobe Bacteroides vulgatus ATCC 8482, a gut microbiome bacterium. Anaerobe 39: 117-123. https://doi.org/10.1016/j.anaerobe.2016.03.012
  52. VanZile ML, Chen X, Giedroc DP. 2002. Allosteric negative regulation of smt O/P binding of the zinc sensor, SmtB, by metal ions: a coupled equilibrium analysis. Biochemistry 41: 9776-9786. https://doi.org/10.1021/bi020178t
  53. Teichert F, Bastolla U, Porto M. 2007. SABERTOOTH: protein structural alignment based on a vectorial structure representation. BMC Bioinformatics 8: 425. https://doi.org/10.1186/1471-2105-8-425
  54. Shi W, Wu J, Rosen BP. 1994. Identification of a putative metal binding site in a new family of metalloregulatory proteins. J. Biol. Chem. 269: 19826-19829. https://doi.org/10.1016/S0021-9258(17)32094-X
  55. Ordonez E, Thiyagarajan S, Cook JD, Stemmler TL, Gil JA, Mateos LM, et al. 2008. Evolution of metal(loid) binding sites in transcriptional regulators. J. Biol. Chem. 283: 25706-25714. https://doi.org/10.1074/jbc.M803209200
  56. Qin J, Fu H-L, Ye J, Bencze KZ, Stemmler TL, Rawlings DE, et al. 2007. Convergent evolution of a new arsenic binding site in the ArsR/SmtB family of metalloregulators. J. Biol. Chem. 282: 34346-34355. https://doi.org/10.1074/jbc.M706565200
  57. Parkhill J, Ansari AZ, Wright JG, Brown NL, O'Halloran TV. 1993. Construction and characterization of a mercuryindependent MerR activator (MerRAC): transcriptional activation in the absence of Hg(II) is accompanied by DNA distortion. EMBO J. 12: 413-421. https://doi.org/10.1002/j.1460-2075.1993.tb05673.x
  58. Lund PA, Ford SJ, Brown NL. 1986. Transcriptional regulation of the mercury-resistance genes of transposon Tn501. Microbiology 132: 465-480. https://doi.org/10.1099/00221287-132-2-465
  59. O'Halloran T V, Frantz B, Shin MK, Ralston DM, Wright JG. 1989. The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 56: 119-129. https://doi.org/10.1016/0092-8674(89)90990-2
  60. Amin A, Latif Z. 2017. Screening of mercury-resistant and indole-3-acetic acid producing bacterial-consortium for growth promotion of Cicer arietinum L. J. Basic Microbiol. 57: 204-217. https://doi.org/10.1002/jobm.201600352
  61. Naguib MM, Khairalla AS, El-Gendy AO, Elkhatib WF. 2019. Isolation and characterization of mercury-resistant bacteria from wastewater sources in Egypt. Can. J. Microbiol. 65: 1-14. https://doi.org/10.1139/cjm-2018-0377
  62. Rafiq M, Hayat M, Anesio AM, Jamil SUU, Hassan N, Shah AA, et al. 2017. Recovery of metallo-tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan. PLoS One 12: e0178180. https://doi.org/10.1371/journal.pone.0178180
  63. Matsui K, Yoshinami S, Narita M, Chien M-F, Phung LT, Silver S, et al. 2016. Mercury resistance transposons in Bacilli strains from different geographical regions. FEMS Microbiol. Lett. 363(5): fnw013. https://doi.org/10.1093/femsle/fnw013
  64. Barrineau P, Gilbert P, Jackson WJ, Jones CS, Summers AO, Wisdom S. 1984. The DNA sequence of the mercury resistance operon of the IncFII plasmid NR1. J. Mol. Appl. Genet. 2: 601-619.
  65. Stanisich VA, Bennett PM, Richmond MH. 1977. Characterization of a translocation unit encoding resistance to mercuric ions that occurs on a nonconjugative plasmid in Pseudomonas aeruginosa. J. Bacteriol. 129: 1227-1233. https://doi.org/10.1128/JB.129.3.1227-1233.1977
  66. Barkay T, Miller SM, Summers AO. 2003. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 27: 355-384. https://doi.org/10.1016/S0168-6445(03)00046-9
  67. Sone Y, Nakamura R, Pan-Hou H, Itoh T, Kiyono M. 2013. Role of MerC, MerE, MerF, MerT, and/or MerP in resistance to mercurials and the transport of mercurials in Escherichia coli. Biol. Pharm. Bull. 36(11): 1835-1841. https://doi.org/10.1248/bpb.b13-00554
  68. Hobman JL, Wilkie J, Brown NL. 2005. A design for life: prokaryotic metal-binding MerR family regulators. Biometals 18: 429-436. https://doi.org/10.1007/s10534-005-3717-7
  69. Chang CC, Lin LY, Zou XW, Huang CC, Chan NL. 2015. Structural basis of the mercury(II)-mediated conformational switching of the dual-function transcriptional regulator MerR. Nucleic Acids Res. 43: 7612-7623. https://doi.org/10.1093/nar/gkv681
  70. Watanabe S, Miki K, Kita A, Kobayashi K. 2015. Crystal structure of the [2Fe-2S] transcriptional activator SoxR bound to DNA. PNAS 64: C89-C89.
  71. Changela A, Chen K, Xue Y, Holschen J, Outten CE, O'Halloran T, et al. 2003. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301: 1383-1387. https://doi.org/10.1126/science.1085950
  72. Park S-J, Wireman J, Summers AO. 1992. Genetic analysis of the Tn21 mer operator-promoter. J. Bacteriol. 174: 2160-2171. https://doi.org/10.1128/jb.174.7.2160-2171.1992
  73. Harley CB, Reynolds RP. 1987. Analysis of Escherichia coli promoter sequences. Nucleic Acids Res. 15: 2343-2361. https://doi.org/10.1093/nar/15.5.2343
  74. Summers AO. 2009. Damage control: regulating defenses against toxic metals and metalloids. Curr. Opin. Microbiol. 12: 138-144. https://doi.org/10.1016/j.mib.2009.02.003
  75. Parkhill J, Brown NL. 1990. Site-specific insertion and deletion mutants in the mer promoter-operator region of Tn501; the nineteen base-pair spacer is essential for normal induction of the promoter by MerR. Nucleic Acids Res. 18: 5157-5162. https://doi.org/10.1093/nar/18.17.5157
  76. Sameach H, Narunsky A, Azoulay-Ginsburg S, Gevorkyan-Aiapetov L, Zehavi Y, Moskovitz Y, et al. 2017. Structural and dynamics characterization of the MerR family metalloregulator CueR in its repression and activation states. Structure 25: 988-996. https://doi.org/10.1016/j.str.2017.05.004
  77. Canalizo-Hernandez M, Schatz GC, Mondragon A, Philips SJ, O'Halloran T V, Yildirim I. 2015. Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science 349: 877-881. https://doi.org/10.1126/science.aaa9809
  78. Browning DF, Busby SJW. 2004. The regulation of bacterial transcription initiation. Nat. Rev. Microbiol. 2: 57. https://doi.org/10.1038/nrmicro787
  79. Ansari AZ, Bradner JE, O'halloran TV. 1995. DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374: 370. https://doi.org/10.1038/374370a0
  80. Ansari AZ, Chael ML, O'Halloran TV. 1992. Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 355: 87. https://doi.org/10.1038/355087a0
  81. Outten CE, Outten FW, O'Halloran TV. 1999. DNA distortion mechanism for transcriptional activation by ZntR, a Zn (II)-responsive MerR homologue in Escherichia coli. J. Biol. Chem. 274: 37517-37524. https://doi.org/10.1074/jbc.274.53.37517
  82. Condee CW, Summers AO. 1992. A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. J. Bacteriol. 174: 8094-8101. https://doi.org/10.1128/jb.174.24.8094-8101.1992
  83. Goldbeter A, Koshland DE. 1981. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. USA 78: 6840-6844. https://doi.org/10.1073/pnas.78.11.6840
  84. Ralston DM, O'Halloran T V. 1990. Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc. Natl. Acad. Sci. USA 87: 3846-3850. https://doi.org/10.1073/pnas.87.10.3846
  85. Parks JM, Smith JC. 2016. Modeling mercury in proteins, pp. 103-122. In Methods in enzymology. Elsevier.
  86. Dudev T, Lim C. 2014. Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins. Chem. Rev. 114: 538-556. https://doi.org/10.1021/cr4004665
  87. Chen PR, He C. 2008. Selective recognition of metal ions by metalloregulatory proteins. Curr. Opin. Chem. Biol. 12: 214-221. https://doi.org/10.1016/j.cbpa.2007.12.010
  88. Nordstrom DK. 2017. Worldwide occurrences of arsenic in ground water. Science 2143-2144.
  89. Kaur H, Kumar R, Babu JN, Mittal S. 2015. Advances in arsenic biosensor development-a comprehensive review. Biosens. Bioelectron. 63: 533-545. https://doi.org/10.1016/j.bios.2014.08.003
  90. Siegfried K, Endes C, Bhuiyan AFMK, Kuppardt A, Mattu sch J, van der Meer JR, et al. 2012. Field testing of arsenic in groundwater samples of Bangladesh using a test kit based on lyophilized bioreporter bacteria. Environ. Sci. Technol. 46: 3281-3287. https://doi.org/10.1021/es203511k
  91. Kim HJ, Jeong H, Lee SJ. 2017. Synthetic biology for microbial heavy metal biosensors. J. Biotechnol. 266: 72-76. https://doi.org/10.1016/j.jbiotec.2017.12.005
  92. Bereza-Malcolm LT, Mann G, Franks AE. 2015. Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach. ACS Synth. Biol. 4: 535-546. https://doi.org/10.1021/sb500286r
  93. Date A, Pasini P, Sangal A, Daunert S. 2010. Packaging sensing cells in spores for long-term preservation of sensors: a tool for biomedical and environmental analysis. Anal. Chem. 82: 6098-6103. https://doi.org/10.1021/ac1007865
  94. Stocker J, Balluch D. 2003. Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water 37: 4743-4750. https://doi.org/10.1021/es034258b
  95. Scott DL, Ramanathan S, Shi W, Rosen BP, Daunert S. 1997. Genetically engineered bacteria: electrochemical sensing systems for antimonite and arsenite. Anal. Chem. 69: 16-20. https://doi.org/10.1021/ac960788x
  96. Merulla D, Buffi N, Beggah S, Geiser M, Renaud P, Meer JR Van Der. 2013. Bioreporters and biosensors for arsenic detection. Biotechnological solutions for a world-wide pollution problem. Curr. Opin. Biotechnol. 24: 534-541. https://doi.org/10.1016/j.copbio.2012.09.002
  97. Merulla D, Meer JR Van Der. 2016. Regulatable and modulable background expression control in prokaryotic synthetic circuits by auxiliary repressor binding sites. https://doi.org/10.1021/acssynbio.5b00111
  98. Lewis DEA, Adhya S. 2015. Molecular mechanisms of transcription initiation at gal promoters and their multilevel regulation by GalR, CRP and DNA loop. Biomolecules 5: 2782-2807. https://doi.org/10.3390/biom5042782
  99. Tani C, Inoue K, Tani Y, Harun-ur-Rashid M, Azuma N, Ueda S, et al. 2009. Sensitive fluorescent microplate bioassay using recombinant Escherichia coli with multiple promoter-reporter units in tandem for detection of arsenic. J. Biosci. Bioeng. 108: 414-420. https://doi.org/10.1016/j.jbiosc.2009.05.014
  100. Nistala GJ, Wu K, Rao C V, Bhalerao KD. 2010. A modular positive feedback-based gene amplifier. J. Biol. Eng. 4: 1-8. https://doi.org/10.1186/1754-1611-4-1
  101. Kim HJ, Lim JW, Jeong H, Lee SJ, Lee DW, Kim T, et al. 2016. Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry. Biosens. Bioelectron. 79: 701-708. https://doi.org/10.1016/j.bios.2015.12.101
  102. Gardner TS, Cantor CR, Collins JJ. 2000. Construction of a genetic toggle. Nature 1-4.
  103. Wu CH, Le D, Muchlandani A, Chen W. 2009. Optimization of a whole-cell cadmium sensor with a toggle gene circuit. Biotechnol. Prog. 25: 898-903. https://doi.org/10.1002/btpr.203
  104. Siuti P, Yazbek J, Lu TK. 2013. Synthetic circuits integrating logic and memory in living cells. Nat. Biotechnol. 31: 448-452. https://doi.org/10.1038/nbt.2510
  105. Berset Y, Merulla D, Hatzimanikatis V, Meer JR Van Der. 2017. Mechanistic modeling of genetic circuits for ArsR arsenic regulation. ACS Synth. Biol. 6: 862-874. https://doi.org/10.1021/acssynbio.6b00364
  106. Yagur-Kroll S, Lalush C, Rosen R, Bachar N, Moskovitz Y, Belkin S. 2014. Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl. Microbiol. Biotechnol. 98: 885-895. https://doi.org/10.1007/s00253-013-4888-8
  107. Nielsen AAK, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, et al. 2016. Genetic circuit design automation. Science 352(6281): aac7341 https://doi.org/10.1126/science.aac7341
  108. Prindle A, Samayoa P, Razinkov I, Danino T, Tsimring LS, Hasty J. 2012. A sensing array of radically coupled genetic "biopixels." Nature 481: 39-44. https://doi.org/10.1038/nature10722
  109. Yu S, Teng C, Bai X, Liang J, Song T, Dong L, et al. 2017. Optimization of siderophore production by Bacillus sp. PZ-1 and its potential enhancement of phytoextration of Pb from soil. J. Microbiol. Biotechnol. 27: 1500-1512. https://doi.org/10.4014/jmb.1705.05021
  110. Xu C, Shi W, Rosen BP. 1996. The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. J. Biol. Chem. 271: 2427-2432. https://doi.org/10.1074/jbc.271.5.2427
  111. Liu T, Golden JW, Giedroc DP. 2005. A zinc(II)/lead(II)/cadmium(II)-inducible operon from the cyanobacterium Anabaena is regulated by AztR, an ${\alpha}3N$ ArsR/SmtB metalloregulator. Biochemistry 44: 8673-8683. https://doi.org/10.1021/bi050450+
  112. Corbisier P, Ji G, Nuyts G, Mergeay M, Silver S. 1993. luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258. FEMS Microbiol. Lett. 110: 231-238. https://doi.org/10.1111/j.1574-6968.1993.tb06325.x
  113. Sun Y, Wong MD, Rosen BP. 2001. Role of cysteinyl residues in sensing Pb (II), Cd (II), and Zn (II) by the plasmid pI258 CadC repressor. J. Biol. Chem. 276: 14955-14960. https://doi.org/10.1074/jbc.M010595200
  114. Nucifora G, Chu L, Misra TK, Silver S. 1989. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc. Natl. Acad. Sci. USA 86: 3544-3548. https://doi.org/10.1073/pnas.86.10.3544
  115. Endo G, Silver S. 1995. CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258. J. Bacteriol. 177: 4437-4441. https://doi.org/10.1128/jb.177.15.4437-4441.1995
  116. Wang Y, Kendall J, Cavet JS, Giedroc DP. 2010. Elucidation of the functional metal binding profile of a Cd(II)/Pb(II) sensor CmtRSc from Streptomyces coelicolor. Biochemistry 49: 6617-6626. https://doi.org/10.1021/bi100490u
  117. Harvie DR, Andreini C, Cavallaro G, Meng W, Connolly BA, Yoshida K, et al. 2006. Predicting metals sensed by ArsR-SmtB repressors: allosteric interference by a noneffector metal. Mol. Microbiol. 59: 1341-1356. https://doi.org/10.1111/j.1365-2958.2006.05029.x
  118. Campbell DR, Chapman KE, Waldron KJ, Tottey S, Kendall S, Cavallaro G, et al. 2007. Mycobacterial cells have dual nickel-cobalt sensors sequence relationships and metal sites of metal-responsive repressors are not congruent. J. Biol. Chem. 282: 32298-32310. https://doi.org/10.1074/jbc.M703451200
  119. Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, et al. 1999. ZntR is a Zn(II)-responsive MerRlike transcriptional regulator of zntA in Escherichia coli. Mol. Microbiol. 31: 893-902. https://doi.org/10.1046/j.1365-2958.1999.01229.x
  120. Turner JS, Robinson NJ. 1995. Cyanobacterial metallothioneins: biochemistry and molecular genetics. J. Ind. Microbiol. 14: 119-125. https://doi.org/10.1007/BF01569893
  121. Outten FW, Outten CE, Hale J, O'Halloran T V. 2000. Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J. Biol. Chem. 275: 31024-31029. https://doi.org/10.1074/jbc.M006508200
  122. Checa SK, Espariz M, Audero MEP, Botta PE, Spinelli S V, Soncini FC. 2007. Bacterial sensing of and resistance to gold salts. Mol. Microbiol. 63: 1307-1318. https://doi.org/10.1111/j.1365-2958.2007.05590.x
  123. Misra TK, Brown NL, Fritzinger DC, Pridmore RD, Barnes WM, Haberstroh L, et al. 1984. Mercuric ion-resistance operons of plasmid R100 and transposon Tn501: the beginning of the operon including the regulatory region and the first two structural genes. Proc. Natl. Acad. Sci. USA 81: 5975-5979. https://doi.org/10.1073/pnas.81.19.5975
  124. Moore MJ, Distefano MD, Zydowsky LD, Cummings RT, Walsh CT. 1990. Organomercurial lyase and mercuric ion reductase: nature's mercury detoxification catalysts. Acc. Chem. Res. 23: 301-308. https://doi.org/10.1021/ar00177a006
  125. Hobman JL, Julian DJ, Brown NL. 2012. Cysteine coordination of Pb(II) is involved in the PbrR-dependent activation of the lead-resistance promoter, $P_{pbrA}$, from Cupriavidus metallidurans CH34. BMC Microbiol. 12: 109. https://doi.org/10.1186/1471-2180-12-109
  126. Wang Y, Hemmingsen L, Giedroc DP. 2005. Structural and functional characterization of Mycobacterium tuberculosis CmtR, a Pb(II)/Cd(II)-sensing SmtB/ArsR metalloregulatory repressor. Biochemistry 44: 8976-8988. https://doi.org/10.1021/bi050094v
  127. Pennella MA, Arunkumar AI, Giedroc DP. 2006. Individual metal ligands play distinct functional roles in the zinc sensor Staphylococcus aureus CzrA. J. Mol. Biol. 356: 1124-1136. https://doi.org/10.1016/j.jmb.2005.12.019
  128. Ibanez MM, Checa SK, Soncini FC. 2015. A single serine residue determines selectivity to monovalent metal ions in metalloregulators of the MerR family. J. Bacteriol. 197: 1606-1613. https://doi.org/10.1128/JB.02565-14
  129. Hu mbert MV, R asia RM, Checa SK, S oncini FC. 2013. Protein signatures that promote operator selectivity among paralog MerR monovalent metal ion regulators. J. Biol. Chem. 288: 20510-20519. https://doi.org/10.1074/jbc.M113.452797
  130. Ibanez MM, Cerminati S, Checa SK, Soncini FC. 2013. Dissecting the metal selectivity of MerR monovalent metal ion sensors in Salmonella. J. Bacteriol. 195: 3084-3092. https://doi.org/10.1128/JB.00153-13
  131. Utschig LM, Bryson JW, O'halloran TV. 1995. Mercury-199 NMR of the metal receptor site in MerR and its protein-DNA complex. Science 268: 380-385. https://doi.org/10.1126/science.7716541
  132. Shewchuk LM, Helmann JD, Ross W, Park SJ, Summers AO, Walsh CT. 1989. Transcriptional switching by the MerR protein: activation and repression mutants implicate distinct DNA and mercury (II) binding domains. Biochemistry 28: 2340-2344. https://doi.org/10.1021/bi00431a053
  133. Livrelli V, Lee Iw, Summers AO. 1993. In vivo DNA-protein interactions at the divergent mercury resistance (mer) promoters. I. Metalloregulatory protein MerR mutants. J. Biol. Chem. 268: 2623-2631. https://doi.org/10.1016/S0021-9258(18)53820-5
  134. Caguiat JJ, Watson AL, Summers AO. 1999. Cd (II)-responsive and constitutive mutants implicate a novel domain in MerR. J. Bacteriol. 181: 3462-3471. https://doi.org/10.1128/JB.181.11.3462-3471.1999
  135. Hakkila KM, Nikander PA, Junttila SM, Lamminmaki UJ, Virta MP. 2011. Cd-specific mutants of mercury-sensing regulatory protein MerR, generated by directed evolution. Appl. Environ. Microbiol. 77: 6215-6224. https://doi.org/10.1128/AEM.00662-11
  136. Chander M, Demple B. 2004. Functional analysis of SoxR residues affecting transduction of oxidative stress signals into gene expression. J. Biol. Chem. 279: 41603-41610. https://doi.org/10.1074/jbc.M405512200
  137. Yoon Y, Kang Y, Lee W, Oh K-C, Jang G, Kim B-G. 2018. Modulating the properties of metal-sensing whole-cell bioreporters by interfering with Escherichia coli metal homeostasis. J. Microbiol. Biotechnol. 28: 323-329. https://doi.org/10.4014/jmb.1710.10012

Cited by

  1. Allosteric control of metal-responsive transcriptional regulators in bacteria vol.295, pp.6, 2019, https://doi.org/10.1074/jbc.rev119.011444
  2. Increased Thyroid Cancer Incidence in Volcanic Areas: A Role of Increased Heavy Metals in the Environment? vol.21, pp.10, 2019, https://doi.org/10.3390/ijms21103425
  3. Genetic control of violacein biosynthesis to enable a pigment-based whole-cell lead biosensor vol.10, pp.47, 2019, https://doi.org/10.1039/d0ra04815a
  4. Indigoidine biosynthesis triggered by the heavy metal-responsive transcription regulator: a visual whole-cell biosensor vol.105, pp.14, 2019, https://doi.org/10.1007/s00253-021-11441-5
  5. Development of a bioavailable Hg(II) sensing system based on MerR-regulated visual pigment biosynthesis vol.11, pp.1, 2019, https://doi.org/10.1038/s41598-021-92878-6
  6. Structure, dynamics, and function of SrnR, a transcription factor for nickel-dependent gene expression vol.13, pp.12, 2019, https://doi.org/10.1093/mtomcs/mfab069
  7. The response of bacterial communities to V and Cr and novel reducing bacteria near a vanadium‑titanium magnetite refinery vol.806, pp.p3, 2022, https://doi.org/10.1016/j.scitotenv.2021.151214