DOI QR코드

DOI QR Code

The PM2.5 Emission Source Contribution Analysis using The PMF Model in Urban Area

PMF 모델을 이용한 도심지역 PM2.5 오염원 기여도 분석

  • Koo, Tai-Wan (Department of Environmental and Safety, Ajou University) ;
  • Hong, Min-Sun (Department of Environmental and Safety, Ajou University) ;
  • Moon, Su-Ho (DASAN Region Development Institute) ;
  • Kim, Ho-Jung (DASAN Region Development Institute)
  • 구태완 (아주대학교 환경안전공학과) ;
  • 홍민선 (아주대학교 환경안전공학과) ;
  • 문수호 (다산지역발전연구원) ;
  • 김호정 (다산지역발전연구원)
  • Received : 2019.08.27
  • Accepted : 2019.09.27
  • Published : 2019.09.30

Abstract

In this study, The PMF model was used to identify pollutant sources and their contribution to pollution sources of $PM_{2.5}$. The contribution of A city to each source was 19.8% for Secondary Sulfate, followed by Mobile 19.5%, Industry 16.0%, Biomass Buring 14.1%, Secondary Nitrate 14.1%, Oil Combustion 11.6%, Aged Sea Salt 2.6%, Soil 2.5% and so on. Sulfate and Ammonium concentrations were the highest contributing sources in the source profile, which was analyzed to be Secondary Aerosols produced by Photochemical Reactions of gaseous precursors (SOx and ammonia gas) in the atmosphere.

본 연구에서는 PMF 모델을 이용하여 $PM_{2.5}$에 대한 오염원 확인 및 오염원별 기여도를 분석하였다. A시의 배출원별 기여도 순위는 Secondary Sulfate가 19.8%로 가장 기여도가 높고, 그 다음으로는 Mobile 19.5%, Industry 16.0%, Biomass Buring 14.1%, Secondary Nitrate 14.1%, Oil Combustion 11.6%, Aged Sea Salt 2.6%, Soil 2.5% 등으로 분석되었다. Sulfate와 Ammonium 농도가 배출원별 프로파일에서 기여도가 가장 높은 오염원으로 분석되었는데, 이는 대기 중에서 가스상 전구물질(SOx와 암모니아 가스)이 광화학 반응하여 생성된 2차 에어로졸인 것으로 분석되었다.

Keywords

References

  1. S. W. Han, "Analysis of the properties of Particle Matter in Busan and Daegu. Busan University(Master thesis)", (2014).
  2. J. C. Ko, K. W. Ryu, I. G. Park, "The dispersion characteristics analysis of PM10 and PM2.5 in industrial complex using atmospheric dispersion model", J. KSET, Vol.19, No.4 pp. 366-374, (2018).
  3. B. H. Kim, D. S. Kim, "Studies on the environmental behaviors of ambient PM2.5 and PM10 in Suwon area", J. KOSAE, Vol.16, No.2 pp. 89-101, (2000).
  4. G. H. Park, W. G. Do, E. C. Yoo, "Reduction of air pollutants through facility improvement of bus platform and risk assessment", The annual report of Busan metropolitan city institute of health & environment, Vol.20, No.1 pp. 163-175, (2011).
  5. E. J. Park, M. S. Kang, D. E. You, D. S. Kim, S. D. Yu, K. Chung, K. Park, "Health risk assessment of heavy metals in fine particles collected in Seoul metropolitan area", Journal of Environmental Toxicology, Vol.20, No.2 pp. 179-186, (2005). https://doi.org/10.1002/tox.20093
  6. GIHE, "Annual Report of Air Quality in Gyeonggi-do 2016", Gyeonggi-do Institute of Health & Environment, (2017).
  7. Y. Jeong, I. Hwang, "Source Apportionment of PM2.5 in Gyeongsan Using the PMF Model", Journal of Korean Society for Atmospheric Environment, Vol.31, No.6 pp. 508-519, (2015). https://doi.org/10.5572/KOSAE.2015.31.6.508
  8. K. J. Moon, J. S. Han, B. J. Kong, I. R. Jung, S. S. Cliff, T. A. Cahill, and K. D. Perry "Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan, Jeju Island during ACE-Asia", J. Korean Soc. Atmos. Environ., Vol.22, No.5 pp. 590-603, (2006).
  9. I. J. Hwang, Y. H. Cho, W. G. Choi, H. M. Lee, and T. O. Kim, "Quantitative estimation of $PM_{10}$ source contribution in Gumi city by the positive matrix factorization model", J. Korean Soc. Atmos. Environ., Vol.24, No.1 pp. 100-107, (2008). https://doi.org/10.5572/KOSAE.2008.24.1.100
  10. S. M. Yi, I. J. Hwang, "Source Identification and Estimation of Source Apportionment for Ambient $PM_{2.5}$ in Seoul, Korea", Asian J. Atmos. Environ., Vol.8, No.3 pp. 115-125, (2014). https://doi.org/10.5572/ajae.2014.8.3.115
  11. E. J. Kim, C. G. Lee, J. H. Kim, Y. K. Park, "Evaluation of Enviromental Benefit and Cost for Management of Air Quality-[Based on Fine Dust Pollution on Donghae Harbor]", J. of Korean Oil Chemists' Soc., Vol.29, No.4 pp. 561-569, (2012). https://doi.org/10.12925/jkocs.2012.29.4.561
  12. J. H. Kim, Y. K. Park, "Fine dust(PM10) emission calculated of Dong-Hae harbor around area using inverse modeling technique", J. of Korean Oil Chemists' Soc., Vol.32, No.4 pp. 649-660, (2015). https://doi.org/10.12925/jkocs.2015.32.4.649
  13. I. Hwang, D. Kim, "Research Trends of Receptor Models in Korea and Foreign Countries and Improvement Directionsfor Air Quality Management", Journal of Korean Society for Atmospheric Environment, Vol.29, No.4 pp. 459-476, (2013). https://doi.org/10.5572/KOSAE.2013.29.4.459
  14. H. W. Lee, T. J. Lee, S. S. Yang, D. S. Kim, "Identification of atmospheric PM10 sources and estimating their contributions to the Yongin-Suwon bordering area by using PMF", Journal of Korean Society for Atmospheric Environment, Vol.24, No.4 pp. 439-454, (2008). https://doi.org/10.5572/KOSAE.2008.24.4.439
  15. I. Hwang, D. Kim, "Source identification of ambient PM-10 using the PMF model, Journal of Korean Society for Atmospheric Environment, Vol.19, No.6 pp. 701-717, (2003).
  16. P. Paatero, "User's Guide for Positive Matrix Factorization Programs PMF2 and PMF3, Part 1: Tutorial; 2000", (2000).
  17. E. Lee, C. K. Chan, P. Paatero, "Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong", Atmospheric Environment, Vol.33, No.19 pp. 3201-3212, (1999). https://doi.org/10.1016/S1352-2310(99)00113-2
  18. B. Liu, J. Yang, J. Yuan, J. Wang, Q. Dai, T. Li, X, Bi, Y. Feng, Z. Xiao, Y. Zhang, "Source apportionment of atmospheric pollutants based on the online data by using PMF and ME2 models at a megacity, China", Atmospheric Research, Vol.185, pp. 22-31, (2017). https://doi.org/10.1016/j.atmosres.2016.10.023
  19. J. H. Tan, J. C. Duan, F. H. Chai, K. B. He, J. M. Hao, "Source apportionment of size segregated fine/ultrafine particle by PMF in Beijing", Atmospheric Research, Vol.139, pp. 90-100, (2014). https://doi.org/10.1016/j.atmosres.2014.01.007