DOI QR코드

DOI QR Code

Suppressed Sheet Resistance of Ag Nanostructure Films by O2 Plasma Treatment

O2 플라즈마 처리를 통한 Ag 나노구조체 필름의 면저항 저감

  • Kim, Wonkyung (Department of Materials Science and Engineering, Yonsei University) ;
  • Roh, Jong Wook (School of Nano & Materials Science and Engineering, Kyungpook National University)
  • 김원경 (연세대학교 신소재공학과) ;
  • 노종욱 (경북대학교 나노소재공학부)
  • Received : 2019.06.18
  • Accepted : 2019.09.06
  • Published : 2019.09.30

Abstract

Sheet resistance reduction in the Ag nanowire (NW) coated films is accomplished with slight improvement of optical properties for the application of transparent conducting electrodes by using $O_2$ plasma treatment. The sheet resistance was optimized after 30 seconds $O_2$ plasma treatment, showing the 27 % of maximum decrease of sheet resistance. It is found that the $O_2$ plasma treatment get rid of the residual organic materials at the junction of Ag NWs. However, the Ag NWs may be also snapped by the excessive $O_2$ plasma treatment can showing the collapses of Ag NWs networks. Furthermore, the optical properties such as optical transmittance and haze were monotonically improved with the $O_2$ plasma treatment time until 90 seconds.

Ag나노와이어 도전성 잉크를 플렉서블한 투명 기판 위에 코팅 후 이러한 여분의 유기물을 $O_2$ 플라즈마를 이용하여 제거함으로써 Ag 나노와이어를 이용한 투명전극의 면저항과 광학적 특성을 최적화하였다. Ag 나노와이어 도전성 잉크를 코팅한 후 30초간 $O_2$ 플라즈마 처리를 하였을 때 면저항은 최대 27 % 정도 감소하였으며, 잔류 유기물의 제거를 통하여 그 광학적 특성도 향상됨을 알 수 있었다. 또한 $O_2$ 플라즈마 처리 시간이 30초 이상 증가할 경우 그 면저항이 오히려 감소함을 확인하였는데, 이는 과도한 $O_2$ 플라즈마로 인하여 Ag나노와이어의 degradation이 일어나는데 그 원인이 있음을 확인하였다.

Keywords

References

  1. K. Alzoubi, M. M. Hamasha, S. Lu, and B. Sammakia, "Bending Fatigue Study of Sputtered ITO on Flexible Substrate", J. Disp. Technol., 7(11), 593 (2011). https://doi.org/10.1109/JDT.2011.2151830
  2. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. Ahn, P. Kim, J. Choi, and B. H. Hong, "Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes", Nature, 459, 706 (2009).
  3. D. S. Hecht, L. Hu, and G. Irvin, "Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures", Adv. Mat., 23(13), 1482 (2011). https://doi.org/10.1002/adma.201003188
  4. X. Wang, L. Zhi, and K. Mullen, "Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells", Nano Lett., 8(1), 323 (2008). https://doi.org/10.1021/nl072838r
  5. L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, "Smooth Nanowire/Polymer Composite Transparent Electrodes", ACS Nano, 4(5), 2955 (2010). https://doi.org/10.1021/nn1005232
  6. W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, "Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes", Adv. Mat., 23(26), 2905 (2011). https://doi.org/10.1002/adma.201100566
  7. C. Kim, C. Jung, Y. Oh, and D. Kim, "A Highly Flexible Transparent Conductive Electrode Based on Nanomaterials", NPG Asia Mater., 9, e438 (2017). https://doi.org/10.1038/am.2017.177
  8. J. Hwang, H. Kim, and J. W. Roh, "Nanowire Length and Diameter Dependent Electrical and Optical Properties of Transparent Conductive Silver Nanowires Films", Int. J. Nanotechnol., 15(6/7), 630 (2018). https://doi.org/10.1504/IJNT.2018.096353
  9. W. Shi, Q. Yao, S. Qu, H. Chen, T. Zhang, and L. Chen, "Micron-thick Highly Conductive PEDOT Films Synthesized via Self-inhibited Polymerization: Roles of Anions", NPG Asia Mater., 9, e405 (2017). https://doi.org/10.1038/am.2017.107
  10. S. Yoo, J. Kim, H. Moon, S. Y. Kim, D. Ko, W. H. Shin, S. Hwang, D. W. Jung, S. Sul, C. Kwak, J. W. Roh, and W. Lee, "Strong Enhancement of Electrical Conductivity in Twodimensional Micrometer-sized $RuO^2$ Nanosheets for Flexible Transparent Electrodes", Nanoscale, 9, 7104 (2017). https://doi.org/10.1039/C6NR09894K
  11. D. Ko, W. Lee, S. Sul, C. Jung, D. Yun, H. Kim, W. Son, J. Chung, D. W. Jung, S. Y. Kim, J. Kim, W. Lee, C. Kwak, J. Kim, and J. W. Roh, "Understanding the Structural, Electrical, and Optical Properties of Monolayer h-phase $RuO^2$ Nanosheets: a Combined Experimental and Computational Study", NPG Asia Mater., 10, 266 (2018). https://doi.org/10.1038/s41427-018-0020-y
  12. O. B. G. Assis, and J. H. Hotchkiss, "Surface Hydrophobic Modification of Chitosan Thin Films by Hexamethyldisilazane Plasma Deposition: Effects on Water Vapour, $CO_2$ and $O_2$ Permeabilities", Packag. Technol. Sci., 20(4), 293 (2007). https://doi.org/10.1002/pts.766
  13. H. Zhu, S. Parvinian, C. Preston, O. Vaaland, Z. Ruan, and L. Hu, "Transparent Nanopaper with Tailored Optical Properties", Nanoscale, 9, 3787 (2013).
  14. L, Jiang, S. Li, J. Wang, L. Yang, Q. Sun, and Z. Li, "Surface Wettability of Oxygen Plasma Treated Porous Silicon", Journal of Nanomaterials, 2014, 526149 (2014).
  15. V. Jokinen, P. Suvanto, and S. Franssila, "Oxygen and Nitrogen Plasma Hydrophilization and Hydrophobic Recovery of Polymers", Biomicrofluidics, 6, 016501 (2012). https://doi.org/10.1063/1.3673251
  16. K. Terpilowski, A. E. Wiacek, and M. Jurak, "Influence of Nitrogen Plasma Treatment on the Wettability of Polyetheretherketone and Deposited Chitosan Layers", Advances in Polymer Technology, 37, 1557 (2017). https://doi.org/10.1002/adv.21813