DOI QR코드

DOI QR Code

벨링스하우젠 해의 동쪽 대륙붕과 대륙대의 코어의 점토광물을 이용한 기원지 연구

Sediment Provenance using Clay Mineral in the Continental Shelf and Rise of the Eastern Bellingshausen Sea, Antarctica

  • 박영규 (연세대학교 지구시스템과학과) ;
  • 정재우 (연세대학교 지구시스템과학과) ;
  • 이기환 (연세대학교 지구시스템과학과) ;
  • 이민경 (한국해양과학기술원 부설 극지연구소 극지고환경연구부) ;
  • 김성한 (한국해양과학기술원 부설 극지연구소 극지고환경연구부) ;
  • 유규철 (한국해양과학기술원 부설 극지연구소 극지고환경연구부) ;
  • 이재일 (한국해양과학기술원 부설 극지연구소 극지고환경연구부) ;
  • 김진욱 (연세대학교 지구시스템과학과)
  • Park, Young Kyu (Department of Earth System Sciences, Yonsei University) ;
  • Jung, Jaewoo (Department of Earth System Sciences, Yonsei University) ;
  • Lee, Kee-Hwan (Department of Earth System Sciences, Yonsei University) ;
  • Lee, Minkyung (Division of Polar Paleoenvironment, Korea Polar Research Institute) ;
  • Kim, Sunghan (Division of Polar Paleoenvironment, Korea Polar Research Institute) ;
  • Yoo, Kyu-Cheul (Division of Polar Paleoenvironment, Korea Polar Research Institute) ;
  • Lee, Jaeil (Division of Polar Paleoenvironment, Korea Polar Research Institute) ;
  • Kim, Jinwook (Department of Earth System Sciences, Yonsei University)
  • 투고 : 2019.08.29
  • 심사 : 2019.09.20
  • 발행 : 2019.09.30

초록

남극 벨링스하우젠 해(Bellingshausen Sea)의 동쪽 대륙붕과 대륙대에 위치한 중력코어(BS17-GC15, BS17-GC04)를 2017년 ANA07D 탐사 동안 획득하였다. 두 코어를 이용하여 벨링스하우젠 해의 해양 퇴적물 내 빙기-간빙기에 따른 점토광물의 분포와 성인을 조사하였다. 두 코어에 대해 퇴적상의 특성을 기술하고, 입도 분석, X선 회절 분석을 실시하여 점토광물의 조성 변화를 관찰하였다. 퇴적학적 특성에 따라 BS17-GC15 코어는 세 개의 퇴적상들로 구분되며 이들은 마지막 빙하기, 전이퇴적상, 간빙기 시기의 퇴적작용에 의해 형성된 것으로 보인다. BS17-GC04 코어는 하부에 빙하기저부 기원의 저탁류의 조합으로 퇴적되는 저탁류 퇴적층과 니질층이 관찰되고, 위쪽으로 올라갈수록 실트질 엽층이 나타나며 상부에서는 생물교란 흔적이 포함된 반원양성 니질층이 나타난다. 퇴적상이 변함에 따라 점토광물의 함량비도 다르게 나타난다. BS17-GC15 코어는 시기에 따라 일라이트가 평균 28.4~44.5 %로 가장 큰 변화를 보이고, 스멕타이트는 빙하기 때 평균 31.1 %에서 20 %로 감소하였다가 간빙기때 25.1 %로 다시 증가하는 양상을 보였다. 녹니석과 카올리나이트의 합은 빙하기 때 평균 40.5 %에서 간빙기 때 30.4 %로 감소하였다. 빙하기 동안 퇴적물이 남극 반도로부터 유입되기 때문에 높은 일라이트와 녹니석 함량을 보인다. 반면, 대륙대에 위치한 BS17-GC04 코어는 빙하기 때 스멕타이트의 함량이 평균 47.2 %에서 상부로 갈수록 평균 20.6 %까지 감소하고 일라이트는 하부에서 평균 21.3 %에서 43.2 %로 증가한다. 빙하기 동안의 높은 스멕타이트 함량은 근처의 스멕타이트가 풍부한 퇴적물인 피터 1세 섬에서 퇴적물이 남극순환류에 의해 운반되었을 것으로 예상되고, 그 이후 간빙기에는 상대적으로 서쪽으로 흐르는 등수심 해류의 영향으로 동쪽의 벨링스하우젠 해의 대륙붕 퇴적물로부터 일라이트와 클로라이트가 풍부한 퇴적물이 운반되었을 것이라 예상된다.

Variations in grain size distribution and clay mineral assemblage are closely related to the sedimentary facies that reflect depositional conditions during the glacial and interglacial periods. Gravity cores BS17-GC15 and BS17-GC04 were collected from the continental shelf and rise in the eastern Bellingshausen Sea during a cruise of the ANA07D Cruise Expedition by the Korea Polar Research Institute in 2017. Core sediments in BS17-GC15 consisted of subglacial diamicton, gravelly muddy sand, and bioturbated diatom-bearing mud from the bottom to the top sediments. Core sediments in BS17-GC04 comprised silty mud with turbidites, brownish structureless mud, laminated mud, and brownish silty bioturbated diatom-bearing mud from the bottom to the top sediments. The clay mineral assemblages in the two core sediments mainly consisted of smectite, chlorite, illite, and kaolinite. The clay mineral contents in core GC15 showed a variation in illite from 28.4 % to 44.5 % in down-core changes. Smectite contents varied from 31.1 % in the glacial period to 20 % in the deglacial period and 25.1 % in the interglacial period. Chlorite and kaolinite contents decreased from 40.5 % in the glacial period to 30.3 % in the interglacial period. The high contents of illite and chlorite indicated a terrigenous detritus supply from the bedrocks of the Antarctic Peninsula. Core GC04 from the continental rise showed a decrease in the average smectite content from 47.2 % in the glacial period to 20.6 % in the interglacial period, while the illite contents increased from the 21.3 % to 43.2 % from the glacial to the interglacial period. The high smectite contents in core GC04 during the glacial period may be supplied from Peter I Island, which has a known smectite-rich sediment contributed by Antarctic Circumpolar Currents. Conversely, the decrease in smectite and increase in chlorite and illite contents during the interglacial period was likely caused by a higher supply of chlorite- and illite-enriched sediment from the eastern Bellingshausen Sea shelf by the southwestward flowing contour current.

키워드

참고문헌

  1. Anderson, J.B. (1999) Antarctic Marine Geology. Cambridge University Press, Cambridge, 289p.
  2. Barker, P.F., Barrett, P.J., Cooper, A.K., and Huybrechts, P. (1999) Antarctic glacial history from numerical models and continental margin sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 150, 247-267. https://doi.org/10.1016/S0031-0182(98)00224-7
  3. Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803-832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  4. Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, Berlin, 623p.
  5. Domack, E.W., Jacobson, E.A., Shipp, S., and Anderson, J.B. (1999) Late Pleistocene-Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: Part 2-sedimentologic and stratigraphic signature. Geological Society of America Bulletin, 111, 1517-1536. https://doi.org/10.1130/0016-7606(1999)111<1517:LPHROT>2.3.CO;2
  6. Ehrmann, W., Hillenbrand, C.-D., Smith, J.A., Graham, A.G., Kuhn, G., and Larter, R.D. (2011) Provenance changes between recent and glacial-time sediments in the Amundsen Sea embayment, West Antarctica: Clay mineral assemblage evidence. Antarctic Science, 23, 471-486. https://doi.org/10.1017/S0954102011000320
  7. Ehrmann, W., Setti, M., and Marinoni, L. (2005) Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal palaeoclimatic history. Palaeogeography, Palaeoclimatology, Palaeoecology, 229, 187-211. https://doi.org/10.1016/j.palaeo.2005.06.022
  8. Ehrmann, W.U., Melles, M., Kuhn, G., and Grobe, H. (1992) Significance of clay mineral assemblages in the Antarctic Ocean. Marine Geology, 107, 249-273. https://doi.org/10.1016/0025-3227(92)90075-S
  9. Grobe, H. and Mackensen, A. (1992) Late Quaternary climatic cycles as recorded in sediments from the Antarctic continental margin. The Antarctic Paleoenvironment: A Perspective on Global Change; Antarctic Research Series, 56, 349-376.
  10. Ha, S.B., Kim, B.K., H.G., C., and Colizza, E. (2018) Origin of clay minerals of core RS14-GC2 in the continental slope to the east of the Pennell-Iselin Bank in the Ross Sea, Antarctica. Journal of the Mineralogical Society of Korea, 31, 1-12 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2018.31.1.1
  11. Hernandez-Molina, F., Larter, R., Rebesco, M., and Maldonado, A. (2006) Miocene reversal of bottom water flow along the Pacific Margin of the Antarctic Peninsula: Stratigraphic evidence from a contourite sedimentary tail. Marine Geology, 228, 93-116. https://doi.org/10.1016/j.margeo.2005.12.010
  12. Hillenbrand, C.-D. and Ehrmann, W. (2001) Distribution of clay minerals in drift sediments on the continental rise west of the Antarctic Peninsula, ODP Leg 178, Sites 1095 and 1096. In: Barker, PF, Camerlenghi, A., Acton, GD, and Ramsay, A.T.S. (Eds.), Proc. ODP, Sci. Results, 178p.
  13. Hillenbrand, C.-D. and Ehrmann, W. (2005) Late Neogene to Quaternary environmental changes in the Antarctic Peninsula region: Evidence from drift sediments. Global and Planetary Change, 45, 165-191. https://doi.org/10.1016/j.gloplacha.2004.09.006
  14. Hillenbrand, C.-D., Grobe, H., Diekmann, B., Kuhn, G., and Futterer, D.K. (2003) Distribution of clay minerals and proxies for productivity in surface sediments of the Bellingshausen and Amundsen seas (West Antarctica) - Relation to modern environmental conditions. Marine Geology, 193, 253-271. https://doi.org/10.1016/S0025-3227(02)00659-X
  15. Hillenbrand, C.-D., Larter, R.D., Dowdeswell, J., Ehrmann, W., Cofaigh, C.O., Benetti, S., Graham, A.G., and Grobe, H. (2010) The sedimentary legacy of a palaeo-ice stream on the shelf of the southern Bellingshausen Sea: Clues to West Antarctic glacial history during the Late Quaternary. Quaternary Science Reviews, 29, 2741-2763. https://doi.org/10.1016/j.quascirev.2010.06.028
  16. Hillenbrand, C.D., Ehrmann, W., Larter, R.D., Benetti, S., Dowdeswell, J.A., O Cofaigh, C., Graham, A.G.C., and Grobe, H. (2009) Clay mineral provenance of sediments in the southern Bellingshausen Sea reveals drainage changes of the West Antarctic Ice Sheet during the Late Quaternary. Marine Geology, 265, 1-18. https://doi.org/10.1016/j.margeo.2009.06.009
  17. Licht, K., Dunbar, N., Andrews, J., and Jennings, A. (1999) Distinguishing subglacial till and glacial marine diamictons in the western Ross Sea, Antarctica: Implications for a last glacial maximum grounding line. Geological Society of America Bulletin, 111, 91-103. https://doi.org/10.1130/0016-7606(1999)111<0091:DSTAGM>2.3.CO;2
  18. Lucchi, R., Rebesco, M., Camerlenghi, A., Busetti, M., Tomadin, L., Villa, G., Persico, D., Morigi, C., Bonci, M., and Giorgetti, G. (2002) Mid-late Pleistocene glacimarine sedimentary processes of a high-latitude, deep-sea sediment drift (Antarctic Peninsula Pacific margin). Marine Geology, 189, 343-370. https://doi.org/10.1016/S0025-3227(02)00470-X
  19. Lucchi, R.G. and Rebesco, M. (2007) Glacial contourites on the Antarctic Peninsula margin: Insight for palaeoenvironmental and palaeoclimatic conditions. Geological Society, London, Special Publications, 276, 111-127. https://doi.org/10.1144/GSL.SP.2007.276.01.06
  20. Ó Cofaigh, C., Larter, R.D., Dowdeswell, J.A., Hillenbrand, C.D., Pudsey, C.J., Evans, J., and Morris, P. (2005) Flow of the West Antarctic Ice Sheet on the continental margin of the Bellingshausen Sea at the Last Glacial Maximum. Journal of Geophysical Research: Solid Earth, 110.
  21. Park, Y.K., Lee, J.I., Jung, J., Hillenbrand, C.-D., Yoo, K.-C., and Kim, J. (2019) Elemental compositions of smectites reveal detailed sediment provenance changes during glacial and interglacial periods: The Southern Drake Passage and Bellingshausen Sea, Antarctica. Minerals, 9, 322. https://doi.org/10.3390/min9050322
  22. Petschick, R., Kuhn, G., and Gingele, F. (1996) Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography. Marine Geology, 130, 203-229. https://doi.org/10.1016/0025-3227(95)00148-4
  23. Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B. (2013) Ice-shelf melting around Antarctica. Science, 341, 266-270. https://doi.org/10.1126/science.1235798
  24. Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M.J., and Morlighem, M. (2019) Four decades of Antarctic Ice Sheet mass balance from 1979-2017. Proceedings of the National Academy of Sciences, 116, 1095-1103. https://doi.org/10.1073/pnas.1812883116
  25. Simoes Pereira, P., van de Flierdt, T., Hemming, S.R., Hammond, S.J., Kuhn, G., Brachfeld, S., Doherty, C., and Hillenbrand, C.-D. (2018) Geochemical fingerprints of glacially eroded bedrock from West Antarctica: Detrital thermochronology, radiogenic isotope systematics and trace element geochemistry in Late Holocene glacial-marine sediments. Earth-Science Reviews, 182, 204-232. https://doi.org/10.1016/j.earscirev.2018.04.011
  26. Stow, D. (1982) Bottom currents and contourites in the North Atlantic. Bull. Inst. Geol. Bassin d'Aquitaine, 31, 151-166.
  27. Vaughan, D.G. (2008) West Antarctic Ice Sheet collapse-the fall and rise of a paradigm. Climatic Change, 91, 65-79. https://doi.org/10.1007/s10584-008-9448-3
  28. Yoo, K.C., Yoon, H.I., Lee, J.I., and Lim, H.S. (2008) Glaciomarine sedimentation on the continental rise from the Bellingshausen Sea, West Antarctica. Journal of the Geological Society of Korea, 44, 14-31 (in Korean with English abstract).