DOI QR코드

DOI QR Code

Inhibition Effects of Some Amino Acids on the Corrosion of Cobalt in Hydrochloric Acid and Sulfuric Acid

염산과 황산 용액에서 코발트의 부식에 미치는 아미노산의 부식억제효과

  • Park, Hyunsung (Department of Chemistry, College of Natural Science, Hankuk University of Foreign Studies) ;
  • Kim, Younkyoo (Department of Chemistry, College of Natural Science, Hankuk University of Foreign Studies)
  • 박현성 (한국외국어대학교 자연과학대학 화학과) ;
  • 김연규 (한국외국어대학교 자연과학대학 화학과)
  • Received : 2019.05.15
  • Accepted : 2019.06.13
  • Published : 2019.10.20

Abstract

Inhibition effects of cysteine(Cys), methionine(Met), and histidine(His) on the corrosion of cobalt were investigated in deaerated 0.5 M HCl and 0.5 M $H_2SO_4$ solution. All the inhibition efficiency (IE) in the amino acids for the cobalt corrosion depended on the mixed inhibition. However, IE in the solution of $H_2SO_4$ depended more on the anodic and in the solution of HCl on the cathodic inhibition. Amino acid adsorption process on cobalt surface in the solution can be explained by modified Langmuir isotherm. The molecules of histidine dissolved in both of the solution were physically adsorbed due to the electrostatic interaction between the surface of {$Co-Cl^{-{\delta}}$} and the {$-NH_3{^+}$} or {$-NH^+=$} of His. However the other cases of adsorption in this investigation can be explained by chemical adsorption between the empty d-orbital of Co and the lone pair of electron in S-atom in Cys and Met.

코발트의 부식에 대한 시스테인(Cys), 메티오닌(Met), 히스티딘(His)의 부식억제 효과를 공기를 제거한 0.5 M HCl과 0.5 M $H_2SO_4$ 용액에서 연구하였다. 코발트에 대한 아미노산의 부식 억제효과는 혼합 부식억제 방식에 의하여 나타나지만, $H_2SO_4$ 용액에서는 산화반응 속도의 감소가 그리고 HCl 용액에서는 환원반응 속도의 감소가 더 큰 영향을 미쳤다. 코발트 표면에서 일어나는 아미노산의 흡착은 수정된 Langmuir 흡착 등온식을 따르며 HCl, $H_2SO_4$ 용액에서 흡착되는 히스티딘은 히스티딘의 {$-NH_3{^+}$}, {$-NH^+=$}와 코발트 표면의 {$Co-Cl^{-{\delta}}$}와의 정전기적 인력에 의한 물리흡착으로, 다른 경우는 Co의 빈 d-orbital과 시스테인 또는 메티오닌에 존재하는 S의 비공유 전자쌍 사이에서 일어나는 화학흡착으로 설명할 수 있었다.

Keywords

References

  1. Metikos-Hukovic, M.; Babic, R. Corros. Sci. 2007, 49, 3570. https://doi.org/10.1016/j.corsci.2007.03.023
  2. Davis, J. R. Nickel, Cobalt, and Their Alloys; ASM International: Materials Park, OH, 2000; p 442.
  3. Koch, G. H.; Brongers, M. P. H.; Thomson, N. G.; Virmani, Y. P.; Payer, J. H. Corrosion Cost and Preventive Strategies in the United States (Report No. FHWA-RD-01-156); CC Technologies Laboratories, Inc.,/NACE International: Doublin, OH/Houston, TX, 2001; p 773.
  4. Osaka, T. Electrochim. Acta 2000, 45, 3311 https://doi.org/10.1016/S0013-4686(00)00407-2
  5. Contu. F.; Elsener, B.; Bohni, H. Corros. Sci. 2005, 47, 1863. https://doi.org/10.1016/j.corsci.2004.09.003
  6. Pontinha, M.; Faty, S.; Walls, M. G.; Ferreira, M. G. S.; Da Cunha Belo, M. Corros. Sci. 2006, 48, 2971. https://doi.org/10.1016/j.corsci.2005.10.007
  7. Gallant, D.; Simard, S. Corros. Sci. 2005, 47, 1810. https://doi.org/10.1016/j.corsci.2004.08.008
  8. Gallant, D.; Pezolet, M.; Jacques, A.; Simard, S. Corros. Sci. 2006, 48, 2547. https://doi.org/10.1016/j.corsci.2005.09.006
  9. Gallant, D.; Pezolet, M.; Simard, S. Electrochim. Acta 2007, 52, 4927. https://doi.org/10.1016/j.electacta.2007.01.057
  10. Kim, Y.; Chon, J.-K. J. Korean Chem. Soc. 2007, 51, 479. https://doi.org/10.5012/jkcs.2007.51.6.479
  11. Real, S. G.; Ribotta, S. B.; Arvia, A. J. Corros. Sci. 2008, 50, 463. https://doi.org/10.1016/j.corsci.2007.07.001
  12. Calderon, J. A.; Barcia, O. E.; Mattos, O. R. Corros. Sci. 2008, 50, 2101. https://doi.org/10.1016/j.corsci.2008.04.013
  13. Cuesta, A.; Gutierrez, C. Langmuir 1998, 14, 3390. https://doi.org/10.1021/la970628w
  14. Devillers, S.; Hennart, A.; Delhalle, J.; Mekhalif, Z. Langmuir 2011, 27, 14849. https://doi.org/10.1021/la2026957
  15. Hoertz, P. G.; Niskala, J. R.; Dai, P.; Black, H. T.; You, W. J. Am. Chem. Soc. 2008, 130, 9763. https://doi.org/10.1021/ja800278a
  16. Huo, S.; Zhu, Q.; Chu, C.-S.; Fang, J.-H. J. Phys. Chem. C 2012, 116, 20269. https://doi.org/10.1021/jp300841t
  17. Zaferani, S. H.; Sharifi, M.; Zaarei, D.; Shishesaz, M. R. J. Environ. Chem. Eng. 2013, 1, 652. https://doi.org/10.1016/j.jece.2013.09.019
  18. Saifi, H.; Bernard, M. C.; Joiret, S.; Rahmouni, K.; Takenouti, H.; Talhi, B. Mat. Chem. Phys. 2010, 120, 661. https://doi.org/10.1016/j.matchemphys.2009.12.011
  19. Bobina, M.; Kellenberger, A.; Millet, J.-P.; Muntean, C.; Vaszilcsin, N. Corros Sci. 2013, 69, 389. https://doi.org/10.1016/j.corsci.2012.12.020
  20. Kim, Y. J. Korean Chem. Soc. 2014, 58, 437. https://doi.org/10.5012/jkcs.2014.58.5.437
  21. Chon, J.-K.; Kim, Y. J. Korean Chem. Soc. 2007, 51, 14. https://doi.org/10.5012/jkcs.2007.51.1.014
  22. Harris, D. C. Quantitative Chemical Analysis, 7th ed.; Freeman & Co.: New York, 2007; p 182.
  23. Damaskin, B. B.; Petrii, O. A.; Batrakov, V. V. Adsorption of Organic Compounds on Electrodes; Uvarov, E. B., Ed.; Plenum Press: New York, 1971; p 86.
  24. Bastidas, J. M.; Pinilla, P.; Cano, E.; Polo, J. L.; Miguel, S. Corros. Sci. 2003, 45, 427. https://doi.org/10.1016/S0010-938X(02)00123-3
  25. Oguzie, E. E.; Li, Y.; Wang, F. H. J. Colloid Interface Sci. 2007, 310, 90. https://doi.org/10.1016/j.jcis.2007.01.038
  26. Atkins, P. W. Physical Chemistry, 4th ed.; Oxford University Press: Oxford, 1993; p 885.
  27. Badawy, W. A.; Ismail, K. M.; Fathi, A. M. Electrochim. Acta 2006, 51, 4182. https://doi.org/10.1016/j.electacta.2005.11.037
  28. Ismail, K. M. Electrochim. Acta 2007, 52, 7811. https://doi.org/10.1016/j.electacta.2007.02.053
  29. Chon, J.-K.; Kim, Y. J. Korean Chem. Soc. 2008, 52, 434. https://doi.org/10.5012/jkcs.2008.52.4.434
  30. Chon, J.-K.; Kim, Y. J. Korean Electrochem. Soc. 2009, 12, 311. https://doi.org/10.5229/JKES.2009.12.4.311
  31. Kim, Y. J. Korean Chem. Soc. 2015, 59, 125. https://doi.org/10.5012/jkcs.2015.59.2.125