DOI QR코드

DOI QR Code

레몬그라스와 자소엽 추출물의 피부보습 및 피부장벽에 관한 연구

Skin Hydration and Skin Barrier Effects of Cymbopogon citratus and Perilla frutescens Extracts

  • 소양강 ((재)남원시화장품산업지원센터) ;
  • 황지영 ((재)남원시화장품산업지원센터) ;
  • 김현우 ((재)남원시화장품산업지원센터) ;
  • 조하늘 ((재)남원시화장품산업지원센터) ;
  • 이태범 ((재)남원시화장품산업지원센터)
  • So, Yangkang (Institute of Natural Cosmetic Industry for Namwon) ;
  • Hwang, Ji Young (Institute of Natural Cosmetic Industry for Namwon) ;
  • Kim, Hyun Woo (Institute of Natural Cosmetic Industry for Namwon) ;
  • Jo, Ha Neul (Institute of Natural Cosmetic Industry for Namwon) ;
  • Lee, Tae-Bum (Institute of Natural Cosmetic Industry for Namwon)
  • 투고 : 2019.06.19
  • 심사 : 2019.08.13
  • 발행 : 2019.09.30

초록

레몬그라스와 자소엽 추출물은 다양한 생리 효과를 나타내는 것으로 알려져 있지만, 피부보습과 피부장벽에 미치는 영향은 아직까지 연구되지 않았다. 본 연구에서는 레몬그라스와 자소엽 추출물의 피부보습과 피부장벽에 미치는 영향과 페놀성 화합물을 분석하였다. 피부각질형성세포에서 각 추출물이 피부보습에 미치는 영향을 조사한 결과, 두 추출물 모두 물보다 에탄올 추출물에서 히알루론산 생성이 많았다. HPLC를 이용한 19종 페놀성 화합물 분석 결과는 레몬그라스 에탄올 추출물(CCE)에서 chlorogenic acid와 p-coumaric acid가 검출되었으며 자소엽 에탄올 추출물(PFE)에서 rosmarinic acid와 caffeic acid가 검출되었다. 피부보습에 관련된 HAS1, HAS2, HAS3 및 AQP3와 피부장벽에 관련된 filaggrin, loricrin 발현은 PFE보다 CCE에서 높았다. 또한, CCE, PFE 모두 피부보습과 표피분화 조절에 관여하는 $PPAR-{\alpha}$ 단백질의 발현이 농도 의존적으로 증가하였으며 CCE의 주요성분인 chlorogenic acid와 p-coumaric acid가 $PPAR-{\alpha}$ 발현을 증가시켰다. 결론적으로 피부보습과 피부장벽보호 효과에 있어서 CCE가 PFE보다 우수한 효과를 나타내었고, 두 추출물은 피부보습과 피부장벽개선에 대한 기능성 소재로써 활용될 수 있을 것이라 생각된다.

Cymbopogon citratus (CC) and Perilla frutescens (PF) are known to exert various biological effects. However, their skin hydration and skin barrier effects remain unclear. This study investigated effects of their extracts on skin hydration and skin barrier and analysed the phenolic compounds. effects of these extracts on skin hydration in HaCaT cells showed that Hyaluronic acid production in cells treated with ethanol extracts was higher than that treated with water extracts for both CC and PF. HPLC was used to analyse 19 phenolic compounds in CC and PF ethanol extracts (CCE and PFE). Results revealed chlorogenic acid and p-coumaric acid in CCE and rosmarinic acid and caffeic acid in PFE. Expression levels of hyaluronan synthase 1 (HAS1), HAS2, HAS3, and aquaporin 3 (AQP3), which are related to skin moisturization, and filaggrin and loricrin, which are related to skin barrier were higher in cells treated with CCE than with PFE. CCE and PFE also increased expression of PPAR-a protein involved in skin moisturization and epidermal differentiation in a concentration-dependent manner. As major components of CCE, chlorogenic acid and p-coumaric acid increased PPAR-a protein expression. Thus, CCE and PFE could be used as functional cosmetic materials for skin hydration and skin barrier effects.

키워드

참고문헌

  1. A. Sandilands, C. Sutherland, A. D. Irvine, and W. H. McLean, Filaggrin in the frontline: role in skin barrier function and disease, J. Cell Sci., 122(9), 1285 (2009). https://doi.org/10.1242/jcs.033969
  2. M. B. Brown and S. A. Jones, Hyaluronic acid: a unique topical vehicle for the localized delivery of drugs to the skin, J Eur Acad Dermatol Venereol, 19(3), 308 (2005). https://doi.org/10.1111/j.1468-3083.2004.01180.x
  3. E. M. Choi and J. K. Hwang, Antiinflammatory, analgesic and antioxidant activities of the fruit of Foeniculum vulgare, Fitoterapia, 75(6), 557 (2004). https://doi.org/10.1016/j.fitote.2004.05.005
  4. C. H. Kim, M. C. Kwon, J. G. Han, C. S. Na, H. G. Kwak, G. O. Choi, U. Y. Park, and H. Y. Lee, Skin-whitening and UV-protective effects of Angelica gigas Nakai extracts on ultra high pressure extraction process, Korean J. Medicinal Crop Sci., 16(4), 255 (2008).
  5. P. J. Lee, H. T. Kim, K. S. Yoon, H. C. Park, and H. Y. Ha, The effect of Astragalus membranaceus methanol extract on hyaluronic acid production in HaCaT cells, J Korean Med Ophthalmol Otolaryngol Dermatol, 26(1), 75 (2013). https://doi.org/10.6114/jkood.2013.26.1.075
  6. M. J. Cork, S. G. Danby, Y. Vasilopoulos, J. Hadgraft, M. E. Lane, M. Moustafa, R. H. Guy, A. L. Macgowan, R. Tazi-Ahnini, and S. J. Ward, Epidermal barrier dysfunction in atopic dermatitis, J. Invest. Dermatol., 129(8), 1892 (2009). https://doi.org/10.1038/jid.2009.133
  7. C. R. Harding, A. Watkinson, A. V. Rawlings, and I. R. Scott, Dry skin, moisturization and corneodesmolysis, Int J Cosmet Sci, 22(1), 21 (2000). https://doi.org/10.1046/j.1467-2494.2000.00001.x
  8. A. S. Verkman and A. K. Mitra, Structure and function of aquaporin water channels, Am. J. Physiol. Renal Physiol., 278(1), 13 (2000).
  9. R. Sougrat, M. Morand, C. Gondran, P. Barre, R. Gobin, F. Bonte, M. Dumas, and J. M. Verbavatz, Functional expression of AQP3 in human skin epidermis and reconstructed epidermis, J. Invest. Dermatol., 118(4), 678 (2002). https://doi.org/10.1046/j.1523-1747.2002.01710.x
  10. M. Loden M, The skin barrier and use of moisturizers in atopic dermatitis, Clin. Dermatol., 21(2), 145 (2003). https://doi.org/10.1016/S0738-081X(02)00373-5
  11. H. Alam, L. Sehgal, S. T. Kundu, S. N. Dalal, and M. M Vaidya, Novel function of keratins 5 and 14 in proliferation and differentiation of stratified epithelial cells, Mol. Biol. Cell, 22(21), 4068 (2011). https://doi.org/10.1091/mbc.e10-08-0703
  12. H. H. Jang, Effects of acetyl glutamine on the improvement of skin barrier and inhibition of senescence, Asian J Beauty Cosmetol, 16(4), 579 (2018). https://doi.org/10.20402/ajbc.2018.0257
  13. J. S. Oh and H. H. Jang, Epidermal Differentiation and Skin Barrier. Kor J Aesthet Cosmetol., 13(6), 713 (2015).
  14. S. W. Woo, D. B. Rhim, C. Kim C, and J. K. Hwang, Effect of standardized Boesenbergia pandurata extract and its active compound panduratin A on skin hydration and barrier function in human epidermal keratinocytes, Prev Nutr Food Sci, 20(1), 15 (2015). https://doi.org/10.3746/pnf.2015.20.1.15
  15. M. O. Soares, R. C. Alves, P. C. Pires, M. B. Oliveira, and A. F. Vinha, Angolan Cymbopogon citratus used for therapeutic benefits: nutritional composition and influence of solvents in phytochemicals content and antioxidant activity of leaf extracts, Food Chem. Toxicol., 60, 413 (2013). https://doi.org/10.1016/j.fct.2013.07.064
  16. M. N. Boukhatem, M. A. Ferhat, A. Kameli, F. Saidi, and H. T. Kebir, Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs, Libyan J Med, 9(1), 25431 (2014). https://doi.org/10.3402/ljm.v9.25431
  17. J. Cheel, C. Theoduloz, J. Rodriguez, and G. Schmeda-Hirschmann, Free radical scavengers and antioxidants from Lemongrass (Cymbopogon citratus (DC.) Stapf.), J. Agric. Food Chem., 53(7), 2511 (2005). https://doi.org/10.1021/jf0479766
  18. E. M. H. Meabed, A. I. B. Abou-Sreea, and M. H. H. Roby, Chemical analysis and giardicidal effectiveness of the aqueous extract of Cymbopogon citratus Stapf, Parasitol. Res., 117(6), 1745 (2018). https://doi.org/10.1007/s00436-018-5855-1
  19. D. Y. Park and K. Y. Lee, Evaluation of the cosmeceutical activity of ethanol extracts from Perilla frutescens var. acuta, J Korea Acad Industr Coop Soc, 18(3), 513 (2017). https://doi.org/10.5762/KAIS.2017.18.1.513
  20. Y. So, S. Y. Lee, A. R. Han, J. B. Kim, H. G. Jeong, and C. H. Jin, Rosmarinic acid methyl ester inhibits LPS-induced NO production via suppression of MyD88-dependent and independent pathways and induction of HO-1 in RAW 264.7 Cells, Molecules, 21(8), 1083 (2016). https://doi.org/10.3390/molecules21081083
  21. N. Li, Z. J. Zhang, X. J. Li, H. Z. Li, L. X. Cui, and D. L. He, Microcapsules biologically prepared using Perilla frutescens (L.) Britt. essential oil and their use for extension of fruit shelf life, J. Sci. Food Agric., 98(3), 1033 (2018). https://doi.org/10.1002/jsfa.8552
  22. B. Y. Kim, J. S. Jeong, H. J. Kwon, J. H. Lee, and S. P. Hong. Determination of rosmarinic acid and caffeic acid from Perilla frutescens var. japonica and var. acuta by reversed-phase HPLC, Kor. J. Herbol., 23(3), 67 (2008).
  23. Y. Nakamura, Y. Ohto, A. Murakami, and H. Ohigashi, Superoxide scavenging activity of rosmarinic acid from Perilla frutescens Britton Var. acuta f. viridis, J. Agric. Food Chem., 46(11), 4545 (1998). https://doi.org/10.1021/jf980557m
  24. G. Huang and J. Chen, Preparation and applications of hyaluronic acid and its derivatives, Int. J. Biol. Macromol., 125, 478 (2019). https://doi.org/10.1016/j.ijbiomac.2018.12.074
  25. B. Dube, H. J. Luke, M. Aumailley, and P. Prehm, Hyaluronan reduces migration and proliferation in CHO cells, Biochim. Biophys. Acta, 1538(2-3), 283 (2001). https://doi.org/10.1016/S0167-4889(01)00079-9
  26. H. J. Song, M. H. Jin, and S. H. Lee, Effect of ferulic acid isolated from Cnidium Officinale on the synthesis of hyaluronic acid, J. Cosmet. Sci. Korea, 39(4), 281 (2013). https://doi.org/10.15230/SCSK.2013.39.4.281
  27. P. Dahiya and R. Kamal, Hyaluronic Acid: a boon in periodontal therapy, N Am J Med Sci, 5(5), 309 (2013). https://doi.org/10.4103/1947-2714.112473
  28. Y. M. Park, M. Y. Yoon, K. W. Kim, N. Y. Cho, H. W. Lim, J. Y. Lee, J. H. Lee, Y. J. Kim, C. J. Kim, and S. S. Sim. Effects of phenylpropanoid compounds on melanin production in B16 melanoma cells. J. Pharm. Soc. Korea, 47(6), 398 (2003).
  29. M. A. Muhit, M. Izumikawa, K. Umehara, and H. Noguchi, Phenolic constituents of the Bangladeshi medicinal plant Pothos scandens and their antiestrogenic, hyaluronidase inhibition, and histamine release inhibitory activities. Phytochemistry, 121, 30 (2016). https://doi.org/10.1016/j.phytochem.2015.10.009
  30. S. H. Kim, G. W. Nam, B. Y. Kang, H. K. Lee, S. J. Moon, and I. S. Chang, The effect of kaempferol, guercetin on hyaluronan-synthesis stimulation in human keratinocytes (HaCaT), J. Cosmet. Sci. Korea, 31(1), 97 (2011).
  31. S. Saito Y. Takayama, K. Mizumachi, and C. Suzuki, Lactoferrin promotes hyaluronan synthesis in human dermal fibroblasts, Biotechnol. Lett., 33(1), 33 (2011). https://doi.org/10.1007/s10529-010-0389-3
  32. M. S. Kang, H. Y. Ha, and H. T. Kim, An experimental study on the effect of Angelica acutiloba ethanol extract on hyaluronic acid synthesis, J Korean Med Ophthalmol Otolaryngol Dermatol, 28(1), 32 (2015). https://doi.org/10.6114/jkood.2015.28.1.032
  33. M. Hara-Chikuma and A. S. Verkman, Roles of aquaporin-3 in the epidermis, J. Invest. Dermatol., 128(9), 2145 (2008). https://doi.org/10.1038/jid.2008.70
  34. E. Fuchs, Epidermal differentiation and keratin gene expression, J. Cell Sci., 17, 197 (1993). https://doi.org/10.1242/jcs.1993.Supplement_17.28
  35. P. M. Steinert and L. N. Marekov, The proteins elafin, filaggrin, keratin intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are isodipeptide cross-linked components of the human epidermal cornified cell envelope, J. Biol. Chem., 270(30), 17702 (1995). https://doi.org/10.1074/jbc.270.30.17702
  36. S. Natesan, N. L. Wrice, and R. J. Christy, Peroxisome proliferator-activated receptor-${\alpha}$ agonist and all-trans retinoic acid induce epithelial differentiation of subcutaneous adipose-derived stem cells from debrided burn skin, J. Cell. Biochem., 120(6), 9213 (2019). https://doi.org/10.1002/jcb.28197
  37. M. Westergaard, J. Henningsen, M. L. Svendsen, C. Johansen, U. B. Jensen, H. D. Schroder, I. Kratchmarova, R. K. Berge, L. Iversen, Bolund L, K. Kragballe, and K. J. Kristiansen, Modulation of keratinocyte gene expression and differentiation by PPAR-selective ligands and tetradecylthioacetic acid, J. Invest. Dermatol., 116 (5), 702 (2001). https://doi.org/10.1046/j.1523-1747.2001.01329.x
  38. S. H. Kim, G. W. Nam, H. K. Lee, S. J. Moon, and I. S. Chang, The effects of Musk T on peroxisome proliferator-activated receptor [PPAR]-${\alpha}$ activation, epidermal skin homeostasis and dermal hyaluronic acid synthesis, Arch. Dermatol. Res., 298(6), 273 (2006). https://doi.org/10.1007/s00403-006-0684-y
  39. Y. J. Jiang, P. Kim, Y. F. Lu, and K. R. Feingold. PPARgamma activators stimulate aquaporin 3 expression in keratinocytes/epidermis, Exp. Dermatol., 20(7), 595 (2011). https://doi.org/10.1111/j.1600-0625.2011.01269.x
  40. L. Meng, Y. F. Lozano, E. M. Gaydou, and B. Li, Antioxidant activities of polyphenols extracted from Perilla frutescens varieties, Molecules, 14(1), 133 (2008). https://doi.org/10.3390/molecules14010133
  41. T. Murata, T. Miyase, and F. Yoshizaki, Cyclic spermidine alkaloids and flavone glycosides from Meehania fargesii, Chem. Pharm. Bull., 58(5), 696 (2010). https://doi.org/10.1248/cpb.58.696
  42. R. Palombo, I. Savini, L. Avigliano, S. Madonna, A. Cavani, C. Albanesi, A. Mauriello, G. Melino, and A. Terrinoni, Luteolin-7-glucoside inhibits IL-22/STAT3 pathway, reducing proliferation, acanthosis, and inflammation in keratinocytes and in mouse psoriatic model, Cell Death Dis, 7(8). e2344 (2016). https://doi.org/10.1038/cddis.2016.201