DOI QR코드

DOI QR Code

3.3kV Low Resistance 4H-SiC Semi-SJ MOSFET

3.3kV급 저저항 4H-SiC Semi-SJ MOSFET

  • Received : 2019.07.22
  • Accepted : 2019.09.25
  • Published : 2019.09.30

Abstract

In this paper, 4H-SiC MOSFET, the next generation power semiconductor device, was studied. In particular, Semi-SJ MOSFET structures with improved electrical characteristics than conventional DMOSFET structures were proposed in the class of 3300V, and static characteristics of conventional and proposed structures were compared and analyzed through TCAD simulations. Semi-SuperJunction MOSFET structure is partly structure that introduces SuperJunction, improves Electric field distribution through the two-dimensional depletion effect, and increases breakdown voltage. Benefit from the improvement of breakdown voltage, which can improve the on resistance as high doping is possible. The proposed structure has a slight reduction in breakdown voltage, but has an 80% decrease in on resistance compared to the conventional DMOSFET structure, and a 44% decrease in on resistance compared to the Current Spreading Layer(CSL) structure that improves the conventional DMOSFET structure.

본 논문에서는 차세대 전력 반도체 소자인 4H-SiC MOSFET에 대해 연구하였다. 특히 3300V급에서 기존의 DMOSFET 구조보다 개선된 전기적 특성을 갖는 Semi-SuperJunction MOSFET 구조를 제안하였으며, TCAD 시뮬레이션을 통해 기존의 MOSFET과 전기적 특성을 비교 분석하였다. Semi-SJ MOSFET 구조는 부분적으로 SJ를 도입한 구조로, 2차원의 공핍 효과를 통해 전계 분포가 개선되며, 항복 전압이 증가한다. 항복 전압의 개선을 통해 얻은 이득으로, 높은 농도의 도핑이 가능하기 때문에 온 저항을 개선시킬 수 있다. 제안한 Semi-SJ MOSFET 구조는 DMOSFET보다 항복 전압이 8% 감소하지만, 온 저항이 80% 감소한다. 또한 DMOSFET 구조를 개선한 Current Spreading Layer(CSL)구조에 비해서도 온 저항이 44% 감소한다.

Keywords

References

  1. Baliga. B. J., Fundamentals of power semiconductor devices, Springer Science & Business Media, 2008.
  2. Baliga. B. J., Silicon carbide power devices, World scientific, 2006.
  3. Saha, A. & Cooper, J. A., "A 1-kV 4H-SiC power DMOSFET optimized for low on-resistance," IEEE Transactions on Electron Devices, vol.54, no.10, pp.2786-2791, 2007. DOI: 10.1109/TED.2007.904577
  4. Kono, Hiroshi, et al. "14.6 $m{\Omega}cm2$ 3.3 kV DIMOSFET on 4H-SiC (000-1)," Materials Science Forum. Vol.778, pp.935-938, Trans Tech Publications, 2014. https://doi.org/10.4028/www.scientific.net/MSF.778-780.935
  5. CHEN, Weizhong, et al. "A semi-superjunction MOSFET with P-type Bottom Assist Layer," Superlattices and Microstructures, vol.83, pp.745-754, 2015. DOI: 10.1016/j.spmi.2015.03.065
  6. Yu, L., & Sheng, K.. "Modeling and optimal device design for 4H-SiC super-junction devices," IEEE Transactions on Electron Devices, vol.55, no.8, pp.1961-1969, 2008. DOI: 10.1109/TED.2008.926648
  7. Baliga, B. J., Advanced power MOSFET concepts, Springer Science & Business Media, 2010.
  8. HU, Shengdong, et al. "A comparative study of a deep-trench superjunction SiC VDMOS device," Journal of Computational Electronics, vol.18. no.2, pp.553-560, 2019. DOI: 10.1007/s10825-01901318-2
  9. Udrea, F., Deboy, G., & Fujihira, T., "Superjunction power devices, history, development, and future prospects," IEEE Transactions on Electron Devices, vol.64, no.3, pp.713-727, 2017. DOI: 10.1109/TED.2017.2658344
  10. Bo Zhang, et al, "Concept and design of super junction devices," Journal of Semiconductors, vol.39, no.2, 2018. DOI: 10.1088/1674-4926/39/2/021001/meta
  11. B. J. Baliga, "Power semiconductor device figure of merit for high-frequency applications," IEEE Electron Device Letters, Vol.10, no.10, pp. 455-457, 1989. DOI: 10.1109/55.43098