References
- Visca P, Antunes LCS, Towner KJ. 2014. Acinetobacter baumannii: evolution of a global pathogen. Pathog. Dis. 71: 292-301. https://doi.org/10.1111/2049-632X.12125
- Beggs CB, Kerr KG, Snelling AM, Sleigh PA. 2006. Acinetobacter spp. and the clinical environment. Indoor. Built. Environ. 15: 19-24. https://doi.org/10.1177/1420326X06062501
- Morgan DJ, Liang SY, Smith CL, Johnson JK, Harris AD, Furuno JP, et al. 2010. Frequent multidrug-resistant Acinetobacter baumannii contamination of gloves, gowns, and hands of healthcare workers. Infect. Control Hosp. Epidemiol. 31: 716-721. https://doi.org/10.1086/653201
- Lambiase A, Piazza O, Rossano F, Del Pezzo M, Tufano R, Catania MR. 2012. Persistence of carbapenem-resistant Acinetobacter baumannii strains in an Italian intensive care unit during a forty-six month study period. New Microbiol. 35: 199-206.
- Maraki S, Mantadakis E, Mavromanolaki VE, Kofteridis DP, Samonis G. 2016. A 5-year surveillance study on antimicrobial resistance of Acinetobacter baumannii clinical isolates from a tertiary Greek hospital. Infect. Chemother. 48: 190-198. https://doi.org/10.3947/ic.2016.48.3.190
- Vocat A, Hartkoorn RC, Lechartier B, Zhang M, Dhar N, Cole ST, et al. 2015. Bioluminescence for assessing drug potency against nonreplicating Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 59: 4012-4019. https://doi.org/10.1128/AAC.00528-15
- Hakkila K, Maksimow M, Karp M, Virta M. 2002. Reporter genes lucFF, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors. Anal. Biochem. 301: 235-242. https://doi.org/10.1006/abio.2001.5517
- Brodl E, Winkler A, Macheroux P. 2018. Molecular mechanisms of bacterial bioluminescence. Comput. Struct. Biotechnol. J. 16: 551-564. https://doi.org/10.1016/j.csbj.2018.11.003
- Choi KH, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, et al. 2005. A Tn7-based broadrange bacterial cloning and expression system. Nat. Methods. 2: 443-448. https://doi.org/10.1038/nmeth765
- Choi K-H, Schweizer HP. 2006. Mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat. Protoc. 1: 153. https://doi.org/10.1038/nprot.2006.24
- Mitra R, McKenzie GJ, Yi L, Lee CA, Craig NL. 2010. Characterization of the TnsD-attTn7 complex that promotes site-specific insertion of Tn7. Mob. DNA. 1: 18-18. https://doi.org/10.1186/1759-8753-1-18
- Damron FH, McKenney ES, Barbier M, Liechti GW, Schweizer HP, Goldberg JB. 2013. Construction of mobilizable mini-Tn7 vectors for bioluminescent detection of gram-negative bacteria and single-copy promoter lux reporter analysis. Appl. Environ. Microbiol. 79: 4149-4153. https://doi.org/10.1128/AEM.00640-13
- Ducas-Mowchun K, De Silva PM, Crisostomo L, Fernando DM, Chao T-C, Pelka P, et al. 2019. Next generation of Tn7-based single-copy insertion elements for use in multi- and pan-drug-resistant strains of Acinetobacter baumannii. Appl. Environ. Microbiol. 85: e00066-00019.
- Bloor AE, Cranenburgh RM. 2006. An efficient method of selectable marker gene excision by Xer recombination for gene replacement in bacterial chromosomes. Appl. Environ. Microbiol. 72: 2520. https://doi.org/10.1128/AEM.72.4.2520-2525.2006
- Cascioferro A, Boldrin F, Serafini A, Provvedi R, Palù G, Manganelli R. 2010. Xer site-specific recombination, an efficient tool to introduce unmarked deletions into mycobacteria. Appl. Environ. Microbiol. 76: 5312-5316. https://doi.org/10.1128/AEM.00382-10
- Kono N, Arakawa K, Tomita M. 2011. Comprehensive prediction of chromosome dimer resolution sites in bacterial genomes. BMC Genomics 12: 19-19. https://doi.org/10.1186/1471-2164-12-19
- Yildirim S, Thompson MG, Jacobs AC, Zurawski DV, Kirkup BC. 2016. Evaluation of parameters for high efficiency transformation of Acinetobacter baumannii. Sci Rep. 6: 22110. https://doi.org/10.1038/srep22110
- Yang F, Tan Y, Liu J, Liu T, Wang B, Cao Y, et al. 2014. Efficient construction of unmarked recombinant mycobacteria using an improved system. J. Microbiol. Methods. 103: 29-36. https://doi.org/10.1016/j.mimet.2014.05.007
- Yang F, Njire MM, Liu J, Wu T, Wang B, Liu T, et al. 2015. Engineering more stable, selectable marker-Free autoluminescent mycobacteria by one step. PLoS One 10: e0119341. https://doi.org/10.1371/journal.pone.0119341
- Zhang T, Bishai WR, Grosset JH, Nuermberger EL. 2010. Rapid assessment of antibacterial activity against Mycobacterium ulcerans by using recombinant luminescent strains. Antimicrob. Agents Chemother. 54: 2806-2813. https://doi.org/10.1128/AAC.00400-10
- Clinical and Laboratory Standards Institute. 2017. Performance Standards for Antimicrobial Susceptibility Testing, M100-27. 27th Ed. Clinical and Laboratory Standards Institute, Wayne, PA.
- Zhang T, Li SY, Nuermberger EL. 2012. Autoluminescent Mycobacterium tuberculosis for rapid, real-time, non-invasive assessment of drug and vaccine efficacy. PLoS One 7: e29774. https://doi.org/10.1371/journal.pone.0029774
Cited by
- Recent Advances in Genetic Tools for Acinetobacter baumannii vol.11, 2020, https://doi.org/10.3389/fgene.2020.601380
- Where are we and how far is there to go in the development of an Acinetobacter vaccine? vol.20, pp.3, 2021, https://doi.org/10.1080/14760584.2021.1887735