DOI QR코드

DOI QR Code

Influence of Culture Conditions on Production of NGPs by Aspergillus tubingensis

  • Lilia, Lopez De Leon (Laboratoire de Genie Chimique, Universite de Toulouse, CNRS, INPT, UPS) ;
  • Isaura, Caceres (Laboratoire de Genie Chimique, Universite de Toulouse, CNRS, INPT, UPS) ;
  • Julie, Bornot (Laboratoire de Genie Chimique, Universite de Toulouse, CNRS, INPT, UPS) ;
  • Elodie, Choque (Laboratoire de Genie Chimique, Universite de Toulouse, CNRS, INPT, UPS) ;
  • Jose, Raynal (Laboratoire de Genie Chimique, Universite de Toulouse, CNRS, INPT, UPS) ;
  • Patricia, Taillandier (Laboratoire de Genie Chimique, Universite de Toulouse, CNRS, INPT, UPS) ;
  • Florence, Mathieu (Laboratoire de Genie Chimique, Universite de Toulouse, CNRS, INPT, UPS)
  • Received : 2019.05.08
  • Accepted : 2019.06.11
  • Published : 2019.09.28

Abstract

The filamentous fungus Aspergillus tubingensis that belongs to the black Aspergillus section has the capacity to produce high-value metabolites, for instance, naphtho-gamma-pyrones (NGPs). For these fungal secondary metabolites, numerous biological properties of industrial interest have been demonstrated, such as antimicrobial, antioxidant and anti-cancer capacities. It has been observed that production of these secondary metabolites is linked with fungal sporulation. The aim of this research was to apply osmotic and oxidative environmental stresses to trigger the production of NGPs in liquid cultures with CYB (Czapek Dox Broth). In addition, numerous parameters were tested during the experiments, such as pH value, incubation time, container geometry, and static and agitation conditions. Results demonstrate that the produced amount of NGPs can be enhanced by decreasing the water activity ($a_w$) or by adding an oxidative stress factor. In conclusion, this study can contribute to our knowledge regarding A. tubingensis to present an effective method to increase NGP production, which may support the development of current industrial processes.

Keywords

References

  1. Bibhu PP, Mohd A, Saleem J. 2007. Fermentation Process Optimization. J. Microbiol. 2: 201-208.
  2. Madigan MT, Martinko, Parker. 2008. Brock. Biologia de los microorganismos, pp.142-144. 8th Ed. Prentice hall, Barcelona Espana.
  3. Nielsen KF, Mogensen JM, Johansen M, Larsen TO, Frisvad JC. 2009. Review of secondary metabolites and mycotoxins from the Aspergillus niger group. J. Anal. Bioanal. Chem. 395: 1225-1242. https://doi.org/10.1007/s00216-009-3081-5
  4. Berka RM, Barnett CC. 1989. The development of gene expression systems for filamentous fungi. J. Biotechnol. Adv. 7: 127-154. https://doi.org/10.1016/0734-9750(89)90356-X
  5. Frisvad JC, Larsen TO, Thrane U, Meijer M, Varga J, Samson RA, et al. 2011. Fumonisin and ochratoxin production in industrial Aspergillus niger strains. PLoS One 6: e23496. https://doi.org/10.1371/journal.pone.0023496
  6. Abarca ML, Bragulat MR, Castella G, Cabane FJ. 1994 Ochratoxin A Production by Strains of Aspergillus niger var.niger. Appl. Environ. Microbiol. 60: 2650-2652. https://doi.org/10.1128/AEM.60.7.2650-2652.1994
  7. Dijksterhuis J, Samson RA. 2007. Food Mycology: A Multifaceted Approach to Fungi and Food. PP. 10-17. 1st Ed. CRC Press, Broken Sound Pkwy NW.
  8. Samson RA, Hong S, Peterson SW, Frisvad JC, Varga J. 2007. Polyphasic taxonomy of Aspergillus section Fumigati and its teleomoorph Neosartorya. Stud. Mycol. 59: 147-207. https://doi.org/10.3114/sim.2007.59.14
  9. Samson RA, Houbraken JAMP, Kuijpers AFA, Frank JM, Frisvad JC. 2004. New ochratoxin or sclerotium producing species in Aspergillus section Nigri. J. Stud. Mycol. 50: 45-61.
  10. Bouras N, Mathieu F, Coppel Y, Strelkov SE, Lebrihi A. 2007. Occurrence of naphtho-gamma-pyrones- and ochratoxin A-producing fungi in French grapes and characterization of new naphtho-gamma-pyrone polyketide (aurasperone G) isolated from Aspergillus niger C-433. J. Agric. Food Chem. 55: 8920-8937. https://doi.org/10.1021/jf071406z
  11. Bouras N, Mathieu F, Coppel Y, Lebrihi A. 2005. Aurasperone F-a new member of the naphtho-gamma-pyrone class isolated from a cultured microfungus, Aspergillus niger C-433. Nat. Prod. Res. 19: 653-659. https://doi.org/10.1080/14786410412331286955
  12. Choque E, Kloopp C, Valiere S, El Rayess Y, Raynal J, Mathieu F. 2018. Whole-genome sequencing of Aspergillus tubingensis G131 and overview of its secondary metabolism potential. BMC Genomics 19: 200. https://doi.org/10.1186/s12864-018-4574-4
  13. Choque E, El Rayess Y, Raynal J, Mathieu F. 2015. Fungal naphtho-alpha-pyrones secondary metabolites of industry interest. Appl. Microbiol. Biotechnol. 99: 1081-1096. https://doi.org/10.1007/s00253-014-6295-1
  14. Mosseray R. 1934. Les aspergilluss de la section niger Thom et church. J. La Cellule 43: 245-247.
  15. Samson RA, Varga J. 2009. What is species in asperguillius?. Med. Mycol. 47: Supple 1: 13-S20. https://doi.org/10.1080/13693780802354011
  16. Hang YD, Woodams EE. 1985. Grape pomace: a novel substrate for microbial production of citric acid. Biotechnol. Lett. 7: 253-254. https://doi.org/10.1007/BF01042372
  17. Hang YD, Luh BS, Woodams EE. 1987. Microbial production of citric acid by solid state fermentation of kiwifruit peel. Food Sci. 52: 226-227. https://doi.org/10.1111/j.1365-2621.1987.tb14014.x
  18. Ernst-Russell MA, Chai CL, Wardlaw JH, Elix JA. 2000. Euplectin and Coneuplectin, New Naphthopyrones from the Lichen Flavoparmelia euplecta. J. Nat. Prod. 63: 129-131. https://doi.org/10.1021/np9903245
  19. Li XC, Dunbar D C, E lSohly H N, J acob M R, Nimrod AC, Walker LA, et al. 2001. A new naphthopyrone derivative from Cassia quinquangulata and structural revision of quinquangulin and its glycosides. J. Nat. Prod. 64: 1153-1156. https://doi.org/10.1021/np010173h
  20. Graham JG, Zhang H, Pendland SL, Santarsiero BD, Mesecar AD, Cabieses F, et al. 2004. Antimycobacterial naphtha pyrones from Senna obliqua. J. Nat. Prod. 67: 225-227. https://doi.org/10.1021/np030348i
  21. Lee GY, Jang DS, Lee YM, Kim JM, Kim JS. 2006. Naphtho pyrone glucosides from the seeds of Cassia torawith inhibitory activity on advanced glycation end products (AGEs) formation. Arch. Pharm. Res. 29: 587-590. https://doi.org/10.1007/BF02969270
  22. Bokesch HR, Cartner LK, Fuller RW, Wilson JA, Henrich CJ, Kelley JA, et al. 2010. Inhibition of ABCG2-mediated drug efflux by naphtha pyrones from marine cri-noids. Bioorg. Med. Chem. Lett. 20: 3848-3850. https://doi.org/10.1016/j.bmcl.2010.05.057
  23. Chovolou Y, Ebada SS, Watjen W, Proksch P. 2011. Identification of angular naphtha pyrones from the Philippine echinoderm Comanthus species as inhibitors of the NF-${\kappa}B$ signaling pathway. Eur. J. Pharmacol. 657: 26-34. https://doi.org/10.1016/j.ejphar.2011.01.039
  24. Akiyama K, Teraguchi S, Hamasaki Y, Mori M, Tatsumi K, Ohnishi K, et al. 2003. - New dimeric naphthopyrones from Aspergillus niger. J. Nat. Prod. 66: 136-139. https://doi.org/10.1021/np020174p
  25. Galmarini OL, Stodola FH. 1965. Fonsecin, a pigment from an Aspergillus fonsecaeus. J. Org. Chem. 30: 112-115. https://doi.org/10.1021/jo01012a027
  26. Tanaka H, Wang PL, Yamada O, Tamura H. 1966. Yellow pigments of Aspergillus niger and A. awamori. I. Isolation of aurasperone A and related pigments. J. Agric. Biol. Chem. 30: 107-113.
  27. Sakurai M, Kohno J, Yamamoto K, Okuda T, Nishio M, Kawano K, et al. 2002. TMC-256A1 and C1, new inhibitors of IL-4 signal transduction produced by Aspergillus niger var niger TC 1629. J. Antibiot. 55: 685-692. https://doi.org/10.7164/antibiotics.55.685
  28. Priestap HA. 1984. New naphthopyrones from Aspergillus fonsecaeus. J. Tetrahedron. 40: 3617-3624. https://doi.org/10.1016/S0040-4020(01)88792-5
  29. Singh SB, Zink DL, Bills GF, Teran A, Silverman KC, Lingham RB, et al. 2003. Four novel bis-(naphtho-gammapyrones) isolated from Fusarium species as inhibitors of HIV-1 integrase. J. Bioorg. Med. Chem. Lett. 13: 713-717. https://doi.org/10.1016/S0960-894X(02)01057-0
  30. Hatano T, Uebayashi H, Ito H, Shioto S, Tsuchia T, Yoshida, T. 1999. Phenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus. J. Chem. Pharm. Bull. 47: 1121-1127. https://doi.org/10.1248/cpb.47.1121
  31. Song YC, Li H, Ye YH, Shan CY, Yang YM., Tan RX. 2004. Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. J. FEMS Microbiol. 241: 67-72. https://doi.org/10.1016/j.femsle.2004.10.005
  32. Rabache M, Adrian, J. 1982. Physiological effects of the Aspergillus niger pigments, 2.Antioxygen property of the naphtho-gamma-pyronesestimated in the rat. J. Sci. Aliments 2: 505.
  33. Kitanaka S, Nakayama T, Shibano T, Ohkoshi E, Takido M. 1998. Antiallergic agent from natural sources. Structures and inhibitory effect of histamine release of naphtha pyrone glycosides from seeds of Cassia obtusefoliaL. J. Chem Pharm. Bull. 46: 1650-1652. https://doi.org/10.1248/cpb.46.1650
  34. Koyama K, Natori S, Iitaka, Y. 1987. Absolute configuration of chaetochromin A and related bis(naphto-${\gamma}$-pyrone) mold metabolites. Chem. Pharm. Bull. 35: 4049-4055. https://doi.org/10.1248/cpb.35.4049
  35. Coelho RG, Vilegas W, Devienne KF, Raddi M.S. 2000. A new cytotoxic naphthopyrone dimer from Paepalanthus bromelioides. J. Fitoterapia 71: 497-500. https://doi.org/10.1016/S0367-326X(00)00159-3
  36. Li X-B, Xie F, Liu S-S, Li Y, Zhou J-C, Liu Y-Q, et al. 2013. Naphtho-${\gamma}$-pyrones from endophyte Aspergillus nigeroccurring in the liver wort Heteroscyphus tener (steph.) Schiffn. J. Chem. Biodivers. 10: 1193-1201. https://doi.org/10.1002/cbdv.201300042
  37. Xiao J, Zhang Q, Gao Y-Q, Shi X-W, Gao J-M. 2014. Antifungal and antibacterial metabolites from an endophytic Aspergillus sp. associated with Melia azedarach. J. Nat. Prod. Res. 28: 1388-1392. https://doi.org/10.1080/14786419.2014.904308
  38. Zhang Y, Li XM, Wang BG. 2007. Nigerasperones A-C, New Monomeric and Dimeric Naphtho-${\gamma}$-pyrones from a Marine Alga-derived Endophytic Fungus Aspergillus niger EN-13. J. Antibiot. 60: 204-210. https://doi.org/10.1038/ja.2007.24
  39. Frank HS. 1974. Structure of water and aqueous solutions. pp. 10-47. Ed. by WAP. Luck, Verlag Chemie, Berlin.
  40. Carboue Q, Claeys-Bruno M, Bombarda I, Sergent M, Jolain J, Roussos S. 2018 Experimental design and solid-state fermentation: a holistic approach to improve cultural medium for the production of fungal secondary metabolites. Chemom. Intell. Lab. Syst. 176: 101-107. https://doi.org/10.1016/j.chemolab.2018.03.011
  41. Fountain JC, Bajaj P, Pandey M, Nayak SN, Yang L, Kumar V, et al. 2016. Oxidative stress and carbon metabolism influence Aspergillus flavus transcriptome composition and secondary metabolite production. Sci. Rep. 6: 38747. https://doi.org/10.1038/srep38747
  42. Sloan AE, Labuza TP. 1976. Prediction of water activity lowering ability of food humectants at high Aw. J. Food Sci. 41: 532-535. https://doi.org/10.1111/j.1365-2621.1976.tb00664.x
  43. Geigenberger P. 2003. Response of plant metabolism to too little oxygen. Curr. Opin. Plant Biol. 6: 247-256. https://doi.org/10.1016/S1369-5266(03)00038-4
  44. Veglio F, Beolchini F, Ubaldini S. 1998. Empirical models for oxygen mass transfer: a comparison between shake flask and lab-scale fermentor and application to manganiferous ore bioleaching. Process Biochem. 33: 367-376. https://doi.org/10.1016/S0032-9592(98)00006-5
  45. Carolyn WT Lee, Michael LS. 1991. Different shake flask closures alter gas phase composition and ajmalicine production in Catharanthus roseus cell suspensions. Biotechnol. Tech. 5: 173-178. https://doi.org/10.1007/BF00152776
  46. Gump BH, Zoecklein BW. Fugelsang, KC. 2001. Prediction of prefermentation nutritional status of grape juice. J. Food Microbiol. 14: 286-293.
  47. Miller G. 1959. Use of 3, 5-Dinitrosalicylic acid reagent for Determination of reducing sugar. J. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  48. Clesceri LS, Eaton, AD, Greenberg A.E, Franson MAH. 1996. Standard methods for the examination of water and wastewater. 19th Ed. Washington, DC.
  49. Jenkins D, Medsken, L. 1964. A Brucine Method for the Determination of Nitrate in Ocean, Estuarine, and Fresh Waters. Anal. Chem. 36: 610-612. https://doi.org/10.1021/ac60209a016
  50. Harms H, Schlosser D, Wick LY. 2011. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat. Rev. Microbiol. 9: 177-192. https://doi.org/10.1038/nrmicro2519
  51. Trinci AP. 1974. A study of the kinetics of hyphal extension and branch initiation of fungal mycelial. J. Gen. Microbiol. 81: 225-236. https://doi.org/10.1099/00221287-81-1-225
  52. Olthof THA, Estey RH. 1966. Carbon- and Nitrogen-levels of a Medium in Relation to Growth and Nematophagous Activity of Arthrobotrys oligospora Fresenius. Nature 209: 1158. https://doi.org/10.1038/2091158a0
  53. Engelkes CA, Nuclo RL, Fravel DR. 1997. Effect of carbon, nitrogen,and carbon to nitrogen ratio on growth, sporulation and bio-control efficacy of Taloromyces flavus. J. Phytopathology 87: 500-505. https://doi.org/10.1094/PHYTO.1997.87.5.500
  54. Liu XZ, Chen SY. 2002. Nutritional Requirements of the Nematophagous Fungus Hirsutella rhossiliensis. Biocontrol. Sci. Technol. 12: 381-393. https://doi.org/10.1080/09583150220128167
  55. Gao L, Liu XZ. 2010. Nutritional requirements of mycelial growth and sporulation of several biocontrol fungi in submerged and on solid culture. J. Microbiol. 79: 622-639.
  56. Jackson MA, Bothast RJ. 1990. Carbon concentration and carbon-to-nitrogen ratio influence submerged-culture conidiation by the potential bioherbicide Colletotrichum truncatum NRRL 13737. Appl. Environ. Microbiol. 56: 3435-3438. https://doi.org/10.1128/AEM.56.11.3435-3438.1990
  57. Jackson MA, Schisler DA. 1992. The composition and attributes of Colletotrichum truncatum spores are altered by the nutritional environment. Appl. Environ. Microbiol. 58: 2260-2265. https://doi.org/10.1128/AEM.58.7.2260-2265.1992
  58. Jackson MA, Slininger PJ. 1993. Submerged culture conidial germination and conidiation of the bioherbicide Colletotrichum truncatum are influenced by the amino acid composition of the medium. J. Ind. Microbiol. Biot. 12: 417-422. https://doi.org/10.1007/BF01569675
  59. Schisler DA, Jackson MA, Bothast RJ. 1991. Influence of nutrition during conidiation of Colletotrichum truncatum on conidial germination and efficacy in inciting disease in Sesbania exaltata. J. Phytopathology 81: 587-590. https://doi.org/10.1094/Phyto-81-587
  60. Elson MK, Schisler DA, Jackson MA. 1998. Carbon-tonitrogen ratio, carbon concentration, and amino acid composition of growth media influence conidiation of Helminthosporium solani. J. Mycologia 98: 406-413.
  61. Gao L, Sun MH, Liu XZ, Che YS. 2006. Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi. J. Mycol Res. 3: 87-92.
  62. Child JJ, Knapp C, Eveleigh DE. 1973. Improved pH control of fungal culture media. Mycologia 65: 1078-1086. https://doi.org/10.1080/00275514.1973.12019528
  63. Wheeler KA, Hurdman BF, Pitt JI. 1991. Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. Int. J. Food Microbiol. 12: 141-149. https://doi.org/10.1016/0168-1605(91)90063-U
  64. Papagianni M. 2004. Fungal morphology and metabolite production in submerged mycelial processes. J. Biotechnol Adv. 22: 189-259. https://doi.org/10.1016/j.biotechadv.2003.09.005
  65. Casas Lopez JL, Sanchez Perez JA, Fernandez Sevilla JM, Rodriguez Porcel EM, Chisti Y. 2005. Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. J. Biotechnol. 116: 61-77. https://doi.org/10.1016/j.jbiotec.2004.10.005
  66. Bilder TB, Fonteno WC. 1987. Effects of container geometry and media physical properties on air and water volumes in containers. J. Environ. Hortic. 5: 180-182. https://doi.org/10.24266/0738-2898-5.4.180
  67. Raitt DC, Johnson AL, Erkine AM, Makino K, Morgan B, Gross DS, et al. 2000. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. J. Mol. Biol. Cell 11: 2335-2347. https://doi.org/10.1091/mbc.11.7.2335
  68. Hagiwara D, Mizuno T, Abe K. 2009. Characterization of NikA histidine kinase and two response regulators with special reference to osmotic adaptation and asexual development in Aspergillus nidulans. J. Biosci. Biotechnol. Biochem. 73: 1566-1571. https://doi.org/10.1271/bbb.90063
  69. Xue, T, Nguyen CK, Romans A, May GS. 2004. A mitogenactivated protein kinase that senses nitrogen regulates conidial germination and growth in Aspergillus fumigatus. J. Eukaryotic Cell 3: 557-560. https://doi.org/10.1128/EC.3.2.557-560.2004
  70. Han KH, Seo JA, Yu JH. 2003. A putative G protein-coupled receptor controls growth, Germination and coordinated development in Aspergillus nidulans. J. Mol. Microbiol 51: 1333-1345.
  71. Ochiai N, Tokai T, Nishiuchi T, Takahashi-Ando N, Fujimura M, Kimura M. 2007. Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. J. Biochem. Biophys. Res. Commun. 363: 639-644. https://doi.org/10.1016/j.bbrc.2007.09.027
  72. Hicks J, Lockington RA, Strauss J, Dieringer D, Kubicek CP, Kelly J, et al. 2001. RcoA has pleiotropic effects on Aspergillus nidulans cellular development. J. Mol. Microbiol. 39: 1482-1493. https://doi.org/10.1046/j.1365-2958.2001.02332.x
  73. Davis ND, Diener UL. 1968. Growth and aflatoxin production by Aspergillus parasiticus from various carbon sources. App. Microbiol. 16: 158-159. https://doi.org/10.1128/AEM.16.1.158-159.1968
  74. Chipley JR, Uraih, N. 1980. Inhibition of Aspergillus growth and aflatoxin release by derivatives of benzoic acid. Appl. Environ. Microbiol. 40: 352-357. https://doi.org/10.1128/AEM.40.2.352-357.1980
  75. Fountain JC, Scully BT, Chen ZY, Gold SE, Glenn AE, Abbas HK, et al. 2015. Effects of hydrogen peroxide on different toxigenic and atoxigenic isolates of Aspergillus flavus. Toxins(basel) 7: 2985-2999. https://doi.org/10.3390/toxins7082985

Cited by

  1. Naphtho-Gamma-Pyrones Produced by Aspergillus tubingensis G131: New Source of Natural Nontoxic Antioxidants vol.10, pp.1, 2019, https://doi.org/10.3390/biom10010029
  2. Impact of Spray-Drying on Biological Properties of Chitosan Matrices Supplemented with Antioxidant Fungal Extracts for Wine Applications vol.77, pp.2, 2019, https://doi.org/10.1007/s00284-019-01804-7
  3. Biobased Materials from Microbial Biomass and Its Derivatives vol.13, pp.6, 2019, https://doi.org/10.3390/ma13061263
  4. Impact of Fungal Extracts on the Physical and Antioxidant Properties of Bioactive Films Based on Enzymatically Hydrolyzed Yeast Cell Wall vol.29, pp.6, 2019, https://doi.org/10.1007/s10924-020-02004-2
  5. Acetylcholine esterase inhibitory activity of green synthesized nanosilver by naphthopyrones isolated from marine-derived Aspergillus niger vol.16, pp.9, 2019, https://doi.org/10.1371/journal.pone.0257071