References
- Bibhu PP, Mohd A, Saleem J. 2007. Fermentation Process Optimization. J. Microbiol. 2: 201-208.
- Madigan MT, Martinko, Parker. 2008. Brock. Biologia de los microorganismos, pp.142-144. 8th Ed. Prentice hall, Barcelona Espana.
- Nielsen KF, Mogensen JM, Johansen M, Larsen TO, Frisvad JC. 2009. Review of secondary metabolites and mycotoxins from the Aspergillus niger group. J. Anal. Bioanal. Chem. 395: 1225-1242. https://doi.org/10.1007/s00216-009-3081-5
- Berka RM, Barnett CC. 1989. The development of gene expression systems for filamentous fungi. J. Biotechnol. Adv. 7: 127-154. https://doi.org/10.1016/0734-9750(89)90356-X
- Frisvad JC, Larsen TO, Thrane U, Meijer M, Varga J, Samson RA, et al. 2011. Fumonisin and ochratoxin production in industrial Aspergillus niger strains. PLoS One 6: e23496. https://doi.org/10.1371/journal.pone.0023496
- Abarca ML, Bragulat MR, Castella G, Cabane FJ. 1994 Ochratoxin A Production by Strains of Aspergillus niger var.niger. Appl. Environ. Microbiol. 60: 2650-2652. https://doi.org/10.1128/AEM.60.7.2650-2652.1994
- Dijksterhuis J, Samson RA. 2007. Food Mycology: A Multifaceted Approach to Fungi and Food. PP. 10-17. 1st Ed. CRC Press, Broken Sound Pkwy NW.
- Samson RA, Hong S, Peterson SW, Frisvad JC, Varga J. 2007. Polyphasic taxonomy of Aspergillus section Fumigati and its teleomoorph Neosartorya. Stud. Mycol. 59: 147-207. https://doi.org/10.3114/sim.2007.59.14
- Samson RA, Houbraken JAMP, Kuijpers AFA, Frank JM, Frisvad JC. 2004. New ochratoxin or sclerotium producing species in Aspergillus section Nigri. J. Stud. Mycol. 50: 45-61.
- Bouras N, Mathieu F, Coppel Y, Strelkov SE, Lebrihi A. 2007. Occurrence of naphtho-gamma-pyrones- and ochratoxin A-producing fungi in French grapes and characterization of new naphtho-gamma-pyrone polyketide (aurasperone G) isolated from Aspergillus niger C-433. J. Agric. Food Chem. 55: 8920-8937. https://doi.org/10.1021/jf071406z
- Bouras N, Mathieu F, Coppel Y, Lebrihi A. 2005. Aurasperone F-a new member of the naphtho-gamma-pyrone class isolated from a cultured microfungus, Aspergillus niger C-433. Nat. Prod. Res. 19: 653-659. https://doi.org/10.1080/14786410412331286955
- Choque E, Kloopp C, Valiere S, El Rayess Y, Raynal J, Mathieu F. 2018. Whole-genome sequencing of Aspergillus tubingensis G131 and overview of its secondary metabolism potential. BMC Genomics 19: 200. https://doi.org/10.1186/s12864-018-4574-4
- Choque E, El Rayess Y, Raynal J, Mathieu F. 2015. Fungal naphtho-alpha-pyrones secondary metabolites of industry interest. Appl. Microbiol. Biotechnol. 99: 1081-1096. https://doi.org/10.1007/s00253-014-6295-1
- Mosseray R. 1934. Les aspergilluss de la section niger Thom et church. J. La Cellule 43: 245-247.
- Samson RA, Varga J. 2009. What is species in asperguillius?. Med. Mycol. 47: Supple 1: 13-S20. https://doi.org/10.1080/13693780802354011
- Hang YD, Woodams EE. 1985. Grape pomace: a novel substrate for microbial production of citric acid. Biotechnol. Lett. 7: 253-254. https://doi.org/10.1007/BF01042372
- Hang YD, Luh BS, Woodams EE. 1987. Microbial production of citric acid by solid state fermentation of kiwifruit peel. Food Sci. 52: 226-227. https://doi.org/10.1111/j.1365-2621.1987.tb14014.x
- Ernst-Russell MA, Chai CL, Wardlaw JH, Elix JA. 2000. Euplectin and Coneuplectin, New Naphthopyrones from the Lichen Flavoparmelia euplecta. J. Nat. Prod. 63: 129-131. https://doi.org/10.1021/np9903245
- Li XC, Dunbar D C, E lSohly H N, J acob M R, Nimrod AC, Walker LA, et al. 2001. A new naphthopyrone derivative from Cassia quinquangulata and structural revision of quinquangulin and its glycosides. J. Nat. Prod. 64: 1153-1156. https://doi.org/10.1021/np010173h
- Graham JG, Zhang H, Pendland SL, Santarsiero BD, Mesecar AD, Cabieses F, et al. 2004. Antimycobacterial naphtha pyrones from Senna obliqua. J. Nat. Prod. 67: 225-227. https://doi.org/10.1021/np030348i
- Lee GY, Jang DS, Lee YM, Kim JM, Kim JS. 2006. Naphtho pyrone glucosides from the seeds of Cassia torawith inhibitory activity on advanced glycation end products (AGEs) formation. Arch. Pharm. Res. 29: 587-590. https://doi.org/10.1007/BF02969270
- Bokesch HR, Cartner LK, Fuller RW, Wilson JA, Henrich CJ, Kelley JA, et al. 2010. Inhibition of ABCG2-mediated drug efflux by naphtha pyrones from marine cri-noids. Bioorg. Med. Chem. Lett. 20: 3848-3850. https://doi.org/10.1016/j.bmcl.2010.05.057
-
Chovolou Y, Ebada SS, Watjen W, Proksch P. 2011. Identification of angular naphtha pyrones from the Philippine echinoderm Comanthus species as inhibitors of the NF-
${\kappa}B$ signaling pathway. Eur. J. Pharmacol. 657: 26-34. https://doi.org/10.1016/j.ejphar.2011.01.039 - Akiyama K, Teraguchi S, Hamasaki Y, Mori M, Tatsumi K, Ohnishi K, et al. 2003. - New dimeric naphthopyrones from Aspergillus niger. J. Nat. Prod. 66: 136-139. https://doi.org/10.1021/np020174p
- Galmarini OL, Stodola FH. 1965. Fonsecin, a pigment from an Aspergillus fonsecaeus. J. Org. Chem. 30: 112-115. https://doi.org/10.1021/jo01012a027
- Tanaka H, Wang PL, Yamada O, Tamura H. 1966. Yellow pigments of Aspergillus niger and A. awamori. I. Isolation of aurasperone A and related pigments. J. Agric. Biol. Chem. 30: 107-113.
- Sakurai M, Kohno J, Yamamoto K, Okuda T, Nishio M, Kawano K, et al. 2002. TMC-256A1 and C1, new inhibitors of IL-4 signal transduction produced by Aspergillus niger var niger TC 1629. J. Antibiot. 55: 685-692. https://doi.org/10.7164/antibiotics.55.685
- Priestap HA. 1984. New naphthopyrones from Aspergillus fonsecaeus. J. Tetrahedron. 40: 3617-3624. https://doi.org/10.1016/S0040-4020(01)88792-5
- Singh SB, Zink DL, Bills GF, Teran A, Silverman KC, Lingham RB, et al. 2003. Four novel bis-(naphtho-gammapyrones) isolated from Fusarium species as inhibitors of HIV-1 integrase. J. Bioorg. Med. Chem. Lett. 13: 713-717. https://doi.org/10.1016/S0960-894X(02)01057-0
- Hatano T, Uebayashi H, Ito H, Shioto S, Tsuchia T, Yoshida, T. 1999. Phenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus. J. Chem. Pharm. Bull. 47: 1121-1127. https://doi.org/10.1248/cpb.47.1121
- Song YC, Li H, Ye YH, Shan CY, Yang YM., Tan RX. 2004. Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. J. FEMS Microbiol. 241: 67-72. https://doi.org/10.1016/j.femsle.2004.10.005
- Rabache M, Adrian, J. 1982. Physiological effects of the Aspergillus niger pigments, 2.Antioxygen property of the naphtho-gamma-pyronesestimated in the rat. J. Sci. Aliments 2: 505.
- Kitanaka S, Nakayama T, Shibano T, Ohkoshi E, Takido M. 1998. Antiallergic agent from natural sources. Structures and inhibitory effect of histamine release of naphtha pyrone glycosides from seeds of Cassia obtusefoliaL. J. Chem Pharm. Bull. 46: 1650-1652. https://doi.org/10.1248/cpb.46.1650
-
Koyama K, Natori S, Iitaka, Y. 1987. Absolute configuration of chaetochromin A and related bis(naphto-
${\gamma}$ -pyrone) mold metabolites. Chem. Pharm. Bull. 35: 4049-4055. https://doi.org/10.1248/cpb.35.4049 - Coelho RG, Vilegas W, Devienne KF, Raddi M.S. 2000. A new cytotoxic naphthopyrone dimer from Paepalanthus bromelioides. J. Fitoterapia 71: 497-500. https://doi.org/10.1016/S0367-326X(00)00159-3
-
Li X-B, Xie F, Liu S-S, Li Y, Zhou J-C, Liu Y-Q, et al. 2013. Naphtho-
${\gamma}$ -pyrones from endophyte Aspergillus nigeroccurring in the liver wort Heteroscyphus tener (steph.) Schiffn. J. Chem. Biodivers. 10: 1193-1201. https://doi.org/10.1002/cbdv.201300042 - Xiao J, Zhang Q, Gao Y-Q, Shi X-W, Gao J-M. 2014. Antifungal and antibacterial metabolites from an endophytic Aspergillus sp. associated with Melia azedarach. J. Nat. Prod. Res. 28: 1388-1392. https://doi.org/10.1080/14786419.2014.904308
-
Zhang Y, Li XM, Wang BG. 2007. Nigerasperones A-C, New Monomeric and Dimeric Naphtho-
${\gamma}$ -pyrones from a Marine Alga-derived Endophytic Fungus Aspergillus niger EN-13. J. Antibiot. 60: 204-210. https://doi.org/10.1038/ja.2007.24 - Frank HS. 1974. Structure of water and aqueous solutions. pp. 10-47. Ed. by WAP. Luck, Verlag Chemie, Berlin.
- Carboue Q, Claeys-Bruno M, Bombarda I, Sergent M, Jolain J, Roussos S. 2018 Experimental design and solid-state fermentation: a holistic approach to improve cultural medium for the production of fungal secondary metabolites. Chemom. Intell. Lab. Syst. 176: 101-107. https://doi.org/10.1016/j.chemolab.2018.03.011
- Fountain JC, Bajaj P, Pandey M, Nayak SN, Yang L, Kumar V, et al. 2016. Oxidative stress and carbon metabolism influence Aspergillus flavus transcriptome composition and secondary metabolite production. Sci. Rep. 6: 38747. https://doi.org/10.1038/srep38747
- Sloan AE, Labuza TP. 1976. Prediction of water activity lowering ability of food humectants at high Aw. J. Food Sci. 41: 532-535. https://doi.org/10.1111/j.1365-2621.1976.tb00664.x
- Geigenberger P. 2003. Response of plant metabolism to too little oxygen. Curr. Opin. Plant Biol. 6: 247-256. https://doi.org/10.1016/S1369-5266(03)00038-4
- Veglio F, Beolchini F, Ubaldini S. 1998. Empirical models for oxygen mass transfer: a comparison between shake flask and lab-scale fermentor and application to manganiferous ore bioleaching. Process Biochem. 33: 367-376. https://doi.org/10.1016/S0032-9592(98)00006-5
- Carolyn WT Lee, Michael LS. 1991. Different shake flask closures alter gas phase composition and ajmalicine production in Catharanthus roseus cell suspensions. Biotechnol. Tech. 5: 173-178. https://doi.org/10.1007/BF00152776
- Gump BH, Zoecklein BW. Fugelsang, KC. 2001. Prediction of prefermentation nutritional status of grape juice. J. Food Microbiol. 14: 286-293.
- Miller G. 1959. Use of 3, 5-Dinitrosalicylic acid reagent for Determination of reducing sugar. J. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Clesceri LS, Eaton, AD, Greenberg A.E, Franson MAH. 1996. Standard methods for the examination of water and wastewater. 19th Ed. Washington, DC.
- Jenkins D, Medsken, L. 1964. A Brucine Method for the Determination of Nitrate in Ocean, Estuarine, and Fresh Waters. Anal. Chem. 36: 610-612. https://doi.org/10.1021/ac60209a016
- Harms H, Schlosser D, Wick LY. 2011. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat. Rev. Microbiol. 9: 177-192. https://doi.org/10.1038/nrmicro2519
- Trinci AP. 1974. A study of the kinetics of hyphal extension and branch initiation of fungal mycelial. J. Gen. Microbiol. 81: 225-236. https://doi.org/10.1099/00221287-81-1-225
- Olthof THA, Estey RH. 1966. Carbon- and Nitrogen-levels of a Medium in Relation to Growth and Nematophagous Activity of Arthrobotrys oligospora Fresenius. Nature 209: 1158. https://doi.org/10.1038/2091158a0
- Engelkes CA, Nuclo RL, Fravel DR. 1997. Effect of carbon, nitrogen,and carbon to nitrogen ratio on growth, sporulation and bio-control efficacy of Taloromyces flavus. J. Phytopathology 87: 500-505. https://doi.org/10.1094/PHYTO.1997.87.5.500
- Liu XZ, Chen SY. 2002. Nutritional Requirements of the Nematophagous Fungus Hirsutella rhossiliensis. Biocontrol. Sci. Technol. 12: 381-393. https://doi.org/10.1080/09583150220128167
- Gao L, Liu XZ. 2010. Nutritional requirements of mycelial growth and sporulation of several biocontrol fungi in submerged and on solid culture. J. Microbiol. 79: 622-639.
- Jackson MA, Bothast RJ. 1990. Carbon concentration and carbon-to-nitrogen ratio influence submerged-culture conidiation by the potential bioherbicide Colletotrichum truncatum NRRL 13737. Appl. Environ. Microbiol. 56: 3435-3438. https://doi.org/10.1128/AEM.56.11.3435-3438.1990
- Jackson MA, Schisler DA. 1992. The composition and attributes of Colletotrichum truncatum spores are altered by the nutritional environment. Appl. Environ. Microbiol. 58: 2260-2265. https://doi.org/10.1128/AEM.58.7.2260-2265.1992
- Jackson MA, Slininger PJ. 1993. Submerged culture conidial germination and conidiation of the bioherbicide Colletotrichum truncatum are influenced by the amino acid composition of the medium. J. Ind. Microbiol. Biot. 12: 417-422. https://doi.org/10.1007/BF01569675
- Schisler DA, Jackson MA, Bothast RJ. 1991. Influence of nutrition during conidiation of Colletotrichum truncatum on conidial germination and efficacy in inciting disease in Sesbania exaltata. J. Phytopathology 81: 587-590. https://doi.org/10.1094/Phyto-81-587
- Elson MK, Schisler DA, Jackson MA. 1998. Carbon-tonitrogen ratio, carbon concentration, and amino acid composition of growth media influence conidiation of Helminthosporium solani. J. Mycologia 98: 406-413.
- Gao L, Sun MH, Liu XZ, Che YS. 2006. Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi. J. Mycol Res. 3: 87-92.
- Child JJ, Knapp C, Eveleigh DE. 1973. Improved pH control of fungal culture media. Mycologia 65: 1078-1086. https://doi.org/10.1080/00275514.1973.12019528
- Wheeler KA, Hurdman BF, Pitt JI. 1991. Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. Int. J. Food Microbiol. 12: 141-149. https://doi.org/10.1016/0168-1605(91)90063-U
- Papagianni M. 2004. Fungal morphology and metabolite production in submerged mycelial processes. J. Biotechnol Adv. 22: 189-259. https://doi.org/10.1016/j.biotechadv.2003.09.005
- Casas Lopez JL, Sanchez Perez JA, Fernandez Sevilla JM, Rodriguez Porcel EM, Chisti Y. 2005. Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. J. Biotechnol. 116: 61-77. https://doi.org/10.1016/j.jbiotec.2004.10.005
- Bilder TB, Fonteno WC. 1987. Effects of container geometry and media physical properties on air and water volumes in containers. J. Environ. Hortic. 5: 180-182. https://doi.org/10.24266/0738-2898-5.4.180
- Raitt DC, Johnson AL, Erkine AM, Makino K, Morgan B, Gross DS, et al. 2000. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. J. Mol. Biol. Cell 11: 2335-2347. https://doi.org/10.1091/mbc.11.7.2335
- Hagiwara D, Mizuno T, Abe K. 2009. Characterization of NikA histidine kinase and two response regulators with special reference to osmotic adaptation and asexual development in Aspergillus nidulans. J. Biosci. Biotechnol. Biochem. 73: 1566-1571. https://doi.org/10.1271/bbb.90063
- Xue, T, Nguyen CK, Romans A, May GS. 2004. A mitogenactivated protein kinase that senses nitrogen regulates conidial germination and growth in Aspergillus fumigatus. J. Eukaryotic Cell 3: 557-560. https://doi.org/10.1128/EC.3.2.557-560.2004
- Han KH, Seo JA, Yu JH. 2003. A putative G protein-coupled receptor controls growth, Germination and coordinated development in Aspergillus nidulans. J. Mol. Microbiol 51: 1333-1345.
- Ochiai N, Tokai T, Nishiuchi T, Takahashi-Ando N, Fujimura M, Kimura M. 2007. Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. J. Biochem. Biophys. Res. Commun. 363: 639-644. https://doi.org/10.1016/j.bbrc.2007.09.027
- Hicks J, Lockington RA, Strauss J, Dieringer D, Kubicek CP, Kelly J, et al. 2001. RcoA has pleiotropic effects on Aspergillus nidulans cellular development. J. Mol. Microbiol. 39: 1482-1493. https://doi.org/10.1046/j.1365-2958.2001.02332.x
- Davis ND, Diener UL. 1968. Growth and aflatoxin production by Aspergillus parasiticus from various carbon sources. App. Microbiol. 16: 158-159. https://doi.org/10.1128/AEM.16.1.158-159.1968
- Chipley JR, Uraih, N. 1980. Inhibition of Aspergillus growth and aflatoxin release by derivatives of benzoic acid. Appl. Environ. Microbiol. 40: 352-357. https://doi.org/10.1128/AEM.40.2.352-357.1980
- Fountain JC, Scully BT, Chen ZY, Gold SE, Glenn AE, Abbas HK, et al. 2015. Effects of hydrogen peroxide on different toxigenic and atoxigenic isolates of Aspergillus flavus. Toxins(basel) 7: 2985-2999. https://doi.org/10.3390/toxins7082985
Cited by
- Naphtho-Gamma-Pyrones Produced by Aspergillus tubingensis G131: New Source of Natural Nontoxic Antioxidants vol.10, pp.1, 2019, https://doi.org/10.3390/biom10010029
- Impact of Spray-Drying on Biological Properties of Chitosan Matrices Supplemented with Antioxidant Fungal Extracts for Wine Applications vol.77, pp.2, 2019, https://doi.org/10.1007/s00284-019-01804-7
- Biobased Materials from Microbial Biomass and Its Derivatives vol.13, pp.6, 2019, https://doi.org/10.3390/ma13061263
- Impact of Fungal Extracts on the Physical and Antioxidant Properties of Bioactive Films Based on Enzymatically Hydrolyzed Yeast Cell Wall vol.29, pp.6, 2019, https://doi.org/10.1007/s10924-020-02004-2
- Acetylcholine esterase inhibitory activity of green synthesized nanosilver by naphthopyrones isolated from marine-derived Aspergillus niger vol.16, pp.9, 2019, https://doi.org/10.1371/journal.pone.0257071