• Title/Summary/Keyword: liquid static culture

Search Result 10, Processing Time 0.023 seconds

Influence of Culture Conditions on Production of NGPs by Aspergillus tubingensis

  • Lilia, Lopez De Leon;Isaura, Caceres;Julie, Bornot;Elodie, Choque;Jose, Raynal;Patricia, Taillandier;Florence, Mathieu
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1412-1423
    • /
    • 2019
  • The filamentous fungus Aspergillus tubingensis that belongs to the black Aspergillus section has the capacity to produce high-value metabolites, for instance, naphtho-gamma-pyrones (NGPs). For these fungal secondary metabolites, numerous biological properties of industrial interest have been demonstrated, such as antimicrobial, antioxidant and anti-cancer capacities. It has been observed that production of these secondary metabolites is linked with fungal sporulation. The aim of this research was to apply osmotic and oxidative environmental stresses to trigger the production of NGPs in liquid cultures with CYB (Czapek Dox Broth). In addition, numerous parameters were tested during the experiments, such as pH value, incubation time, container geometry, and static and agitation conditions. Results demonstrate that the produced amount of NGPs can be enhanced by decreasing the water activity ($a_w$) or by adding an oxidative stress factor. In conclusion, this study can contribute to our knowledge regarding A. tubingensis to present an effective method to increase NGP production, which may support the development of current industrial processes.

Silicone Rubber Membrane Bioreactors for Bacterial Cellulose Production

  • Onodera, Masayuki;Harashima, Ikuro;Toda, Kiyoshi;Asakura, Tomoko
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.289-294
    • /
    • 2002
  • Cellulose production by Acetobacter pasteurianus was investigated in static culture using four bioreactors with silicone rubber membrane submerged in the medium. The shape of the membrane was flat sheet, flat sack, tube and cylindrical balloon. Production rate of cellulose as well as its yield on consumed glucose by the bacteria grown on the flat type membranes was approximately ten-fold greater than those on the non-flat ones in spite of the same membrane thickness. The membrane reactor using flat sacks of silicone rubber membrane as support of bacterial pellicle can supply greater ratio of surface to volume than a conventional liquid surface culture and is promising for industrial production of bacterial cellulose in large scale.

N-terminal amino acid sequence analysis of major manganese peroxidase (MnP3) produced by static culture of Pleurotus ostreatus (느타리 버섯균의 정치배양으로부터 생산되는 중요한 망간퍼옥시데이즈(MnP3)의 N-말단 아미노산 배열 분석)

  • Ha, Hyo-Cheol
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.185-190
    • /
    • 2019
  • Pleurotus ostreatus No.42, known as the ligninolytic basidiomycetes, showed production of MnP and Lac, but did not show any LiP acitivity in static culture, grown in GPYW liquid medium. Maximum production of MnP (80U/flask) was observed on day 11 of culturing in this medium. Chromatographic purification of MnP included the use of Sepharose CL-6B and Mono-Q. The major MnP isozyme purified by column chromatography was observed to be a 36.4 KDa (single band on SDS PAGE). The 19-amino acid sequence from the N-terminal was determined by protein sequencing to be ATCADGRTTANAACCVLFP. The N-terminal sequence of the major MnP isozyme of P. ostreatus No.42 was found to be the same as a previously reported sequence of an MnP3 isozyme from this fungus.

Functional Characteristics and Diversity of a Novel Lignocelluloses Degrading Composite Microbial System with High Xylanase Activity

  • Guo, Peng;Zhu, Wanbin;Wang, Hui;Lu, Yucai;Wang, Xiaofen;Zheng, Dan;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.254-264
    • /
    • 2010
  • To obtain an efficient natural lignocellulolytic complex enzyme, we screened an efficient lignocellulose-degrading composite microbial system (XDC-2) from composted agricultural and animal wastes amended soil following a long-term directed acclimation. Not only could the XDC-2 degrade natural lignocelluloses, but it could also secrete extracellular xylanase efficiently in liquid culture under static conditions at room temperature. The XDC-2 degraded rice straw by 60.3% after fermentation for 15 days. Hemicelluloses were decomposed effectively, whereas the extracellular xylanase activity was dominant with an activity of 8.357 U/ml on day 6 of the fermentation period. The extracellular crude enzyme noticeably hydrolyzed natural lignocelluloses. The optimum temperature and pH for the xylanase activity were $40^{\circ}C$ and 6.0. However, the xylanase was activated in a wide pH range of 3.0-10.0, and retained more than 80% of its activity at $25-35^{\circ}C$ and pH 5.0-8.0 after three days of incubation in liquid culture under static conditions. PCR-DGGE analysis of successive subcultures indicated that the XDC-2 was structurally stable over long-term restricted and directed cultivation. Analysis of the 168 rRNA gene clone library showed that the XDC-2 was mainly composed of mesophilic bacteria related to the genera Clostridium, Bacteroides, Alcaligenes, Pseudomonas, etc. Our results offer a new approach to exploring efficient lignocellulolytic enzymes by constructing a high-performance composite microbial system with synergistic complex enzymes.

Production of Corydalis Alkaloids by Plant Cell Culture(I) (식물세포배양에 의한 Corydalis Alkaloid의 생산(I))

  • Chang, Jung-In;Shin, Seung-Won;Chi, Hyung-Joon
    • Korean Journal of Pharmacognosy
    • /
    • v.26 no.4
    • /
    • pp.419-425
    • /
    • 1995
  • Corydalis remota Fish. ex Max. (Papaveraceae) is a well known medicinal plant being used as analgesics or anticonvulsive in oriental medicine. As the alkaloid content is known to vary depending on the environmental factors, the technology of plant tissue culture can be adopted as source of Corydalis-alkaloids. The present study describes an establishment of tissue cultures of Corydalis which produce alkaloids consistently. Callus were induced from immature seeds of Corydalis remota by placing the seeds on MS static media containing NAA(0.25, 1.0 and 4.0 mg/l, respectively). The combined treatment of NAA(1.0 mg/l) with cytokinin(BAP 0.5 mg/l) improved the induction of callus. TLC scanning data followed by sequential extraction and purification revealed that the induced callus contains a significant amount of alkaloids. Cell suspension cultures were established by transferring the induced callus into the liquid media with the same condition of plant growth regulators as the callus culture.

  • PDF

Comparisons of Physical Properties of Bacterial Celluloses Produced in Different Culture Conditions Using Saccharified Food Wastes

  • Moon Seung-Hyeon;Park Ji-Min;Chun Hwa-Youn;Kim Seong-Jun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.26-31
    • /
    • 2006
  • The saccharogenic liquid (SFW) obtained by the enzymatic saccharification of food wastes was used as a medium for production of bacterial cellulose (BC). The enzymatic saccharification of food wastes was carried out by the cultivation supernatant of Trichoderma harziaum FJ1 culture. Acetobacter xylinum KJ1 was employed for the BC production culture. The physical properties, such as polymerization, crystallinity, Young's modulus, and tensile strength, of BCs produced by three culture methods: the static cultures using HS (Hestrin-Schramm) as a reference medium (A) or the SFW medium (B), the shaking culture (C) or the air circulation culture (D) using the SFW medium, were investigated. The degrees of polymerization of BCs produced under the different culture conditions (A-D) showed 11000, 9500, 8500, and 9200, respectively. Young's modulus was 4.15, 5.0, 4.0, and 4.6 GPa, respectively. Tensile strength was 124, 200, 80, and 184 MPa, respectively. All of the BC had a form of cellulose I representing pure cellulose. In the case of the shaking culture, the degree of crystallinity was 51.2%, the lowest degree. Under the other culturing conditions, the trend should remain in the range of 89.7-84%. Overall, the physical properties of BC produced from SFW were similar to those of BC from HS medium, a commercial complex medium, and BC production by the air circulation culture mode brought more favorable results in terms of the physical properties and its ease of scale-up. Therefore, it is expected that a new BC production method, like air circulation culture using SFW, would contribute greatly to BC-related manufacturing.

Purification and Characterization of an Antibacterial Substance from Aerococcus urinaeequi Strain HS36

  • Sung, Ho Sun;Jo, Youl-Lae
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.93-100
    • /
    • 2020
  • A bacterial strain inhibiting the growth of Vibrio anguillarum, the causative agent of vibriosis, was isolated from fish intestines. The isolated strain HS36 was identified as Aerococcus urinaeequi based on the characteristics of the genus according to Bergey's Manual of Systematic Bacteriology and by 16S rRNA sequencing. The growth rate and antibacterial activity of strain HS36 in shaking culture were higher than those in static culture, while the optimal pH and temperature for antibacterial activity were 7.0 and 30℃, respectively. The active antibacterial substance was purified from a culture broth of A. urinaeequi HS36 by Sephadex G-75 gel chromatography, Sephadex G-25 gel chromatography, and reverse-phase high-performance liquid chromatography. Its molecular weight, as estimated by Tricine SDS-polyacrylamide gel electrophoresis, was approximately 1,000 Da. The antibacterial substance produced by strain HS36 was stable after incubation for 1 h at 100℃. Although its antibacterial activity was optimal at pH 6-8, activity was retained at a pH range from 2 to 11. The purified antibacterial substance was inactivated by proteinase K, papain, and β-amylase treatment. The newly purified antibacterial substance, classified as a class II bacteriocin, inhibited the growth of Klebsiella pneumoniae, Salmonella enterica, and Vibrio alginolyticus.

Chitinase을 생산하는 곤충병원미생물 Metarhizium anisopliae HY-2(KCTC 0156BP)의 토양해충 생물검정

  • Seo, Eun-Yeong;Son, Gwang-Hui;Sin, Dong-Ha;Kim, Gi-Deok;Park, Du-Sang;Park, Ho-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.469-472
    • /
    • 2002
  • Solid state fermentation was performed for the production of entomopathogenic fungus Metarhizium anisopliae HY-2 using wheat bran media containing rice bran. Fungal growth in a solid state fermentation system was estimated by viable cell count, spore count, and mycelial biomass. It was used chemical method measuring N-acetyl-glucosamine (chitin) content for estimating of mycelial biomass. In static flask culture, viable cell reached 2.40 ${\times}$ $10^8$ cfu/g at 23 days of culture at $27^{\circ}C$ and then mycelial biomass was 41.59 mg/g. Specific growth rate(${\mu}$ max) was 0.0418 $h^{-1}$ between 3 and 9 days when estimated by viable cell count and was 0.00976 $h^{-1}$ between 9 and 17 days when N-acetylglucosamine content was measured. Viable cells reached 1.12 ${\times}$ $10^8$ cfu/g in polypropylene-bag at 28 days of culture at $27^{\circ}C$. Formulated microbial pesticide containing M. anisopliae HY-2 were tested their bio-activity against Chestnut Brown Chafer (Adoretus tenuimaculatus). The protection rate of the liquid culture showed 13 ${\sim}$ 26 % with 1st to 3rd instar, and spore suspension of M. anisopliae HY-2 showed 56 ${\sim}$ 64%. Conidia produced by large scale solid-state fermentation showed 20 ${\sim}$ 27 % activity 60 ${\sim}$ 64 % with M. anisopliae HY-2.

  • PDF

Production of Bacterial Cellulose by Pilot Scale and Its Properties (Pilot Scale의 박테리아 셀룰로오스 생산 및 그의 물성)

  • Kim, Seong-Jun;Song, Hyo-Jeong;Chang, Mi-Hwa;Choi, Chang-Nam
    • KSBB Journal
    • /
    • v.22 no.2
    • /
    • pp.91-96
    • /
    • 2007
  • The saccharogenic liquid (SFW) obtained by the enzymatic saccharification of food wastes was used as a medium for production of bacterial cellulose (BC). The enzymatic saccharification of food wastes was carried out by the cultivation supernatant of Tricoderma inhamatum KSJ1 culture. Acetobacter xylinum KJ1 was employed for the BC production culture. Under the scaled-up aeration condition of 1.0 vvm, 5.64 g/L of BC was produced in 3 days cultivation in 50 L air circulation bioreactor using SFW medium with addition of 0.4% agar. The productivity was similar to that of 10 L air circulation bioreactor (5.84 g/L). This cultivation method with 50 L air circulation bioreactor decreasing shear stress and increasing oxygen transfer coefficient ($k_La$) was very useful in BC mass production. The physical properties, such as morphology, molecular weight, crystallinity, and tensile strength of BC produced by the static culture (A), the air circulation culture using 10 L bioreactor (B) and 50 L bioreactor (C) were investigated. The number average molecular weight of BCs produced under the different culture conditions (A-C) showed 2,578,000, 1,975,000, and 1,809,000, respectively. Tensile strength was 1.72 $kg/mm^2$, 1.19 $kg/mm^2$, and 1.18 $kg/mm^2$, respectively. All of the BCs had a form of cellulose I representing pure cellulose. The relative degree of crystallinity showed the range of 86.2$\sim$87.8%. BC production by the air circulation culture mode brought more favorable results in terms of the physical properties and its ease of scale-up. Therefore, it is expected that the new BC production method, the air circulation culture using SFW, would contribute greatly to BC-related manufacturing.

Studies on the Utilization of Cassava Starch by a Strain of Rhizopus and Aspergillus niger (Cassava 전분을 이용하는 Rhizopus 및 Aspergillus niger 에 관한 연구)

  • Kwon, Kyung-Ran;Kim, Jong-Hyup
    • The Korean Journal of Mycology
    • /
    • v.15 no.3
    • /
    • pp.158-168
    • /
    • 1987
  • Several species of the fungi were isolated from cassava(Manihot esculenta Gruntz) starch which had formed into pellet, those had been stored for a while in southern part of Thailand. The species of Rhizopus, Aspergillus niger, and Aspergillus fumigatus were identified. The experimental results are as follows; Dry weight increases were checked during the static liquid culture with modified Czapek Dox medium to which cassava starch was partly replaced to sugar, Aspergillus niger and Aspergillus fumigatus had grown more than Rizopus species when 6% cassava starch was replaced to sugar and had been cultured for 72 hours. Amounts of mycelial protein of Aspergillus niger were checked, the highest amount was shown in 6% cassava starch involved medium. When nitrogen sources were varied such as ammonium sulfate or urea against sodium nitrate, there was no significant difference in mycelial production. Alpha amylase activity of each fungus isolated here was checked, those of Aspergillus niger have shown the highest peak at 72 hours.

  • PDF