References
- Thomson R, Tolson C, Carter R, Coulter C, Huygens F, Hargreaves M. 2013. Isolation of nontuberculous mycobacteria (NTM) from household water and shower aerosols in patients with pulmonary disease caused by NTM. J. Clin. Microbiol. 51: 3006-3011. https://doi.org/10.1128/JCM.00899-13
- Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130: 797-810. https://doi.org/10.1016/j.cell.2007.06.049
- Piccaro G, Pietraforte D, Giannoni F, Mustazzolu A, Fattorini L. 2014. Rifampin induces hydroxyl radical formation in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 58: 7527-7533. https://doi.org/10.1128/AAC.03169-14
- Vilcheze C, Hartman T, Weinrick B, Jacobs Jr WR. 2013. Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat. Commun. 4: 1881. https://doi.org/10.1038/ncomms2898
- Guo J, Li Z, Huang K, Li Y, Wang J. 2017. Morphology analysis of Escherichia coli treated with nonthermal plasma. J. Appl. Microbiol. 122: 87-96. https://doi.org/10.1111/jam.13335
- Uhm HS, Choi EH, Cho GS, Hwang DH. 2013. Infl uence of reactive oxygen species on the sterilization of microbes. Curr. Appl. Phys. 13: S30-S35.
- Daeschlein G, Napp M, Majumdar A, Richter E, Rusch-Gerdes S, Aly F, et al. 2017. In vitro killing of mycobacteria by low temperature atmospheric pressure plasma and dielectric barrier discharge plasma for treatment of tuberculosis. Clin. Plasma Med. 5: 1-7.
- Lee NR, Park SH, Kim JY, Kim KY, Kim DY. 2018. Inactivation efficacy of a non-thermal atmospheric pressure plasma generator against Mycobacterium tuberculosis. Korean J. Healthc. Assoc. Infect. Control Prev. 23: 80-85. https://doi.org/10.14192/kjhaicp.2018.23.2.80
- Hong YC, Uhm HS. 2007. Air plasma jet with hololw electrodes at atmospheric pressure. Phys. Plasmas 14: 053503. https://doi.org/10.1063/1.2736945
- Hong YC, Kang WS, Hong YB, Yi WJ, Uhm HS. 2009. Atmospheric pressure air-plasma jet evolved from microdischarges: Eradication of E. coli with the jet. Phys. Plasmas 16: 123502. https://doi.org/10.1063/1.3272089
- Weltmann KD, Brandenburg R, von Woedtke T, Ehlbeck J, Foest R, Stieber M, et al. 2008. Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs). J. Phys. D Appl. Phys. 41: 194008. https://doi.org/10.1088/0022-3727/41/19/194008
- Lu X, Jiang Z, Xiong Q, Tang Z, Hu X, Pan Y. 2008. An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine. Appl. Phys. Lett. 92: 081502. https://doi.org/10.1063/1.2883945
- Flynn PB, Higginbotham S, Nid'a HA, Gorman SP, Graham WG, Gilmore BF. 2015. Bactericidal efficacy of atmospheric pressure non-thermal plasma (APNTP) against the ESKAPE pathogens. Int. J. Antimicrob. Agents 46: 101-107. https://doi.org/10.1016/j.ijantimicag.2015.02.026
- Xiaohu L, Feng H, Ying G, Jing Z, Jianjun S. 2013. Sterilization of Staphylococcus Aureus by an atmospheric non-thermal plasma jet. Plasma Sci. Technol 15: 439. https://doi.org/10.1088/1009-0630/15/5/09
- Mortazavi SM, Hosseinzadeh Colagar A, Sohbatzadeh F. 2016. The efficiency of the cold argon-oxygen plasma jet to reduce Escherichia coli and Streptococcus pyogenes from solid and liquid ambient. Iran. J. Med. Microbiol. 10: 19-30.
- Uhm H S, L im J P, L i SZ. 2007. Steril ization of b acterial endospores by an atmospheric-pressure argon plasma jet. Appl. Phys. Lett. 90: 261501. https://doi.org/10.1063/1.2747177
- Bansal-Mutalik R, Nikaido H. 2014. Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc. Natl. Acad. Sci. USA 111: 4958-4963. https://doi.org/10.1073/pnas.1403078111
- Kolb JF, Mohamed AAH, Price RO, Swanson RJ, Bowman A, Chiavarini RL, et al. 2008. Cold atmospheric pressure air plasma jet for medical applications. Appl. Phys. Lett. 92: 241501. https://doi.org/10.1063/1.2940325
- Lee CB, Na YH, Hong TE, Choi EH, Uhm HS, Baik KY, et al. 2014. Evidence of radicals created by plasma in bacteria in water. Appl. Phys. Lett. 105: 073702. https://doi.org/10.1063/1.4893565
- Kanazawa S, Kawano H, Watanabe S, Furuki T, Akamine S, Ichiki R, et al. 2011. Observation of OH radicals produced by pulsed discharges on the surface of a liquid. Plasma Sources Sci. Technol. 20: 034010. https://doi.org/10.1088/0963-0252/20/3/034010
- Akhtar S, Sarkar S, Mishra A, Sarkar D. 2011. A method to extract intact and pure RNA from mycobacteria. Anal. Biochem. 417: 286-288. https://doi.org/10.1016/j.ab.2011.06.028
- Siu GKH, Yam WC, Zhang Y, Kao RY. 2014. An upstream truncation of the furA-katG operon confers high-level isoniazid resistance in a Mycobacterium tuberculosis clinical isolate with no known resistance-associated mutations. Antimicrob. Agents Chemother. 58: 6093-6100. https://doi.org/10.1128/AAC.03277-14
- Wu S, Howard ST, Lakey DL, Kipnis A, Samten B, Safi H, et al. 2004. The principal sigma factor sigA mediates enhanced growth of Mycobacterium tuberculosis in vivo. Mol. Microbiol. 51: 1551-1562. https://doi.org/10.1111/j.1365-2958.2003.03922.x
- Christoph VS, Christian O. 2016. The application of cold atmospheric plasma in medicine: the potential role of nitric oxide in plasma-induced effects. Clin. Plasma Med. 4: 1-8. https://doi.org/10.1016/j.cpme.2016.05.001
- Nambi S, Long JE, Mishra BB, Baker R, Murphy KC, Ol ive AJ, et al. 2015. The oxidative stress network of Mycobacterium tuberculosis reveals coordination between radical detoxification systems. Cell Host Microbe 17: 829-837. https://doi.org/10.1016/j.chom.2015.05.008
- Imaly JA. 2003. Pathway of oxidative damage. Annu. Rev. Microbiol. 57: 395-418. https://doi.org/10.1146/annurev.micro.57.030502.090938
- Phaniendra A, Jestadi DB, Periyasamy L. 2015. Free radicals: properties, sources, targets, and their implication in various diseases. Indian. J. Clin. Biochem. 30: 11-26. https://doi.org/10.1007/s12291-014-0446-0
- Wang TY, Libardo MDJ, Angeles-Boza AM, Pellois JP. 2017. Membrane oxidation in cell delivery and cell killing applications. ACS Chem. Biol. 12: 1170-1182. https://doi.org/10.1021/acschembio.7b00237
- Kumar N, Attri P, Choi EH, Uhm HS. 2015. Influence of water vapour with non-thermal plasma jet on the apoptosis of SK-BR-3 breast cancer cells. RSC Adv. 5: 14670-14677. https://doi.org/10.1039/C4RA15879B
- Joshi SG, Cooper M, Yost A, Paff M, Ercan UK, Fridman G, et al. 2011. Non-thermal dielectric-barrier discharge (DBD) Plasma-induced inactivation involves oxidative-DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob. Agents Chemother. 55: 1053-1062. https://doi.org/10.1128/AAC.01002-10
- Nasiri MJ, Haeili M, Ghazi M, Goudarzi H, Pormohammad A, Imani Fooladi AA, et al. 2017. New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Front. Microbiol. 8: 681. https://doi.org/10.3389/fmicb.2017.00681
- Imlay JA. 2008. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77: 755-776. https://doi.org/10.1146/annurev.biochem.77.061606.161055
- Winterbourn CC. 1995. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol. Lett. 82: 969-974. https://doi.org/10.1016/0378-4274(95)03532-X
-
Rhee SG. 2006.
$H_2O_2$ , a necessary evil for cell signaling. Science 312: 1882-1883. https://doi.org/10.1126/science.1130481 - Dobrynin D, Friedman Gr, Friedman G, Fridman A. 2009. Physical and biological mechanisms of direct plasma interaction with living tissue. New. J. Phys. 11: 115020. https://doi.org/10.1088/1367-2630/11/11/115020
- Baik KY, Kim YH, Ryu YH, Kwon HS, Park G, Uhm HS, et al. 2013. Feeding-gas effects of plasma jets on Escherichia coli in physiological solutions. Plasma Process. Polym. 10: 235-242. https://doi.org/10.1002/ppap.201200076
- Voskuil MI, Bartek IL, Visconti K, Schoolnik GK. 2011. The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front. Microbiol. 2: 105.
- Tyagi P, Dharmaraja AT, Bhaskar A, Chakrapani H, Singh A. 2015. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide. Free Radic. Biol. Med. 84: 344-354. https://doi.org/10.1016/j.freeradbiomed.2015.03.008
- Uhm HS. 2015. Generation of various radicals in nitrogen plasma and their behavior in media. Phys Plasmas. 22: 123506. https://doi.org/10.1063/1.4936796
- Uhm HS, Ki SH, Baik KY, Choi EH. 2018. Influence of oxygen on generation of reactive chemicals from nitrogen plasma jet. Sci. Rep. 8: 9318. https://doi.org/10.1038/s41598-018-27473-3
Cited by
- Cold helium plasma as a modifier of free radical processes in the blood: in vitro study vol.8, pp.1, 2019, https://doi.org/10.3934/biophy.2021002
- Concise characterization of cold atmospheric pressure helium plasma jet vol.11, pp.8, 2021, https://doi.org/10.1063/5.0061857