DOI QR코드

DOI QR Code

A Comparison of Blast Load in a Simplified Analytical Model of Rigid Column

강체 기둥의 단순 해석 모델에서의 폭발 하중 비교

  • Received : 2019.09.03
  • Accepted : 2019.09.19
  • Published : 2019.09.30

Abstract

The analysis methods of blast analysis models are classified into direct analysis and indirect analysis, and the latter is divided into semi-empirical and numerical analysis methods. In order to evaluate the applicability of the ELS blast analysis program, which is a program for analyzing the semi-empirical models, this study selected a simplified analytical model and examined the blast load characteristics of free-air burst explosion and surface burst explosion by using AT-Blast, RC-Blast, and Kinney and Graham's empirical equations, which are the semi-empirical analysis programs. As a result of analyzing the explosion pressure for the scaled distance and the incidence angle for the simplified analytical model, an appropriate analysis can be performed when the range of the scaled distance in the free-air burst explosion analysis was 0.3~0.461 and when the range of the scaled distance in the surface burst explosion analysis was 0.378~0.581. In terms of the incidence angle, the results analyzed within $45^{\circ}$ were considered to be appropriate.

폭발 해석 모델의 해석 방법은 직접적 해석과 간접적 해석으로 구별되며, 간접적 해석으로는 반경험적 해석 방법과 수치 해석적 방법으로 나뉜다. 본 연구에서는 반경험적 모델 해석의 프로그램인 ELS 폭발 해석 프로그램의 적용성을 평가하기 위해, 단순 해석 모델을 선정하고 다양한 반경험적 해석 프로그램인 AT-Blast, RC-Blast와 Kinney와 Graham의 경험식을 이용하여 자유 공중 폭발과 지표면 폭발에서의 폭발 하중 특성을 검토하였다. 단순 해석 모델에 대해 환산거리와 입사각에 대한 폭발 압력을 해석한 결과, 자유 공중 폭발 해석에서 환산거리의 범위는 $0.3{\sim}0.461m/kg^{1/3}$이고, 지표면 폭발 해석에서 환산거리의 범위는 $0.378{\sim}0.581m/kg^{1/3}$ 일 때 적합한 해석을 수행할 수 있으며, 입사각의 경우에는 $45^{\circ}$ 이내에서 해석한 결과가 적합한 것으로 판단된다.

Keywords

References

  1. 이경구, 2007, 전산유체동력학에 의한 고급폭발해석, 건축(대한건축학회지), Vol. 51, No. 8, pp. 54-57.
  2. Agrawal, A. K. and Z. Yi, 2009, Blast Load Effects on Highway Bridges, UTRC Report, UNIVERSITY TRANSPORTATION RESEARCH CENTER, pp. 42-44.
  3. ASI, 2010, Extreme Loading for Structures Theoretical Manual, Applied Science International, LLC.
  4. DEPARTMENT OF DEFENSE(DoD), UNIFIED FACILITIES CRITERIA (UFC) Structures to Resist the Effects of Accidental Explosions, UFC 3-340-02, 2008, USA,
  5. Draganic, H. and D. Varevac, 2018, Analysis of Blast Wave Parameters Depending on Air Mesh Size, Shock and Vibration, Vol. 2018, pp. 18.
  6. Kingery, C. N. and G. Bulmash, 1984, Airblast parameters from TNT spherical air burst and hemispherical surface burst. Report ARBRL-TR-02555, US Army Ballastic Research Laboratory, Aberdeen Proving Ground, MD.
  7. Kinney, G. F. and K. J. Graham, 1985, Explosive Shocks in Air 2nd edition, Springer Science+Business Media, New York, pp. 94-98.
  8. Remennikov, A. M., 2003, A review of methods for predicting bomb blast effects on buildings, Journal of Battlefield Technology, Vol. 6, No. 3, pp. 5-10.
  9. Sherkar, P., A. S. Whittaker and A. J. Aref, 2010, Modeling the Effects of Detonations of High Explosives to Inform Blast-Resistant Design, Technical Report MCEER-10-0009, pp. 86-89.
  10. Ullah, A., F. Ahmad, H. W. Jang, S. W. Kim and J. W. Hong, 2017, Review of Analytical and Empirical Estimations for Incident Blast Pressure, KSCE Journal of Civil Engineering. pp. 2211-2225. https://doi.org/10.1007/s12205-016-1386-4