• Title/Summary/Keyword: 지표면 폭발

Search Result 9, Processing Time 0.022 seconds

A Comparison of Blast Load in a Simplified Analytical Model of Rigid Column (강체 기둥의 단순 해석 모델에서의 폭발 하중 비교)

  • Park, Hoon
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.1-12
    • /
    • 2019
  • The analysis methods of blast analysis models are classified into direct analysis and indirect analysis, and the latter is divided into semi-empirical and numerical analysis methods. In order to evaluate the applicability of the ELS blast analysis program, which is a program for analyzing the semi-empirical models, this study selected a simplified analytical model and examined the blast load characteristics of free-air burst explosion and surface burst explosion by using AT-Blast, RC-Blast, and Kinney and Graham's empirical equations, which are the semi-empirical analysis programs. As a result of analyzing the explosion pressure for the scaled distance and the incidence angle for the simplified analytical model, an appropriate analysis can be performed when the range of the scaled distance in the free-air burst explosion analysis was 0.3~0.461 and when the range of the scaled distance in the surface burst explosion analysis was 0.378~0.581. In terms of the incidence angle, the results analyzed within $45^{\circ}$ were considered to be appropriate.

A Study on Noise of Detonator and Explosive Initiation on Ground Surface (지표면에서 뇌관과 폭약 폭발 소음에 관한 연구)

  • 기경철;김일중;원연호;김영근
    • Explosives and Blasting
    • /
    • v.21 no.3
    • /
    • pp.73-80
    • /
    • 2003
  • 암반발파에 사용하고 있는 전기식 뇌관과 비전기식 연결뇌관 및 번치 커넥터(Bunch connector), 점화구, 에멀젼류 폭약이 지상에서 기폭 될 때 발생하는 소음을 비교 분석하였다. 에멀젼류 폭약의 폭발소음과 화공품의 기폭소음에 대한 추정식을 도출하였다. 에멀젼류 폭약의 폭발 소음 예측은 반대수 자승근 환산식, 번치 커넥터, 전기식 뇌관 및 비전기식 연결뇌관 및 점화구는 전대수식이 적합한 것으로 판단된다. 소음원으로부터 동일한 거리에서의 소음은 점화구, 비전기식 연결뇌관, 전기식 뇌관 및 번치 커넥터 순으로 높았다. 소음원으로부터 약20∼30m거리의 범위에서 번치 커넥터의 기폭소음은 에멀젼류 폭약 0.250kg의 폭발소음보다 약15.6∼20.2dB(A) 낮고, 비전기식 연결뇌관 보다 약13.5∼16.0dB(A) 높고, 전기식 뇌관 보다는 약6.5∼7.5dB(A) 높게 됨을 알 수 있었다. 점화구는 약20m 거리에서 약 7dB(A)이하 이었다. 에멀젼류 폭약의 폭발과 번치 커넥터의 기폭소음에 미치는 주(主)소음원은 에멀젼류 폭약의 약량과 번치 커넥터의 도폭선임을 확인하였다.

Conceptual Design for the Dispersal and Deposition Modelling of Fallout Ash from Mt. Baekdu Volcano (백두산 천지 화산의 화산재 확산과 침적 모델링을 위한 개념적 설계)

  • Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.273-289
    • /
    • 2013
  • Fallout ash is a notorious hazard that can have a variety of damages on agriculture and infrastructure and, most notably to aviation and human health. This study discusses the design of a conceptual model to aid in modeling the dispersal and deposition of ash from Mt. Baekdu volcano. It includes a discussion of assumptions and boundary conditions of the model as well as a detailed diagram of the conceptual model, complete with input parameters, units and equations. The two main processes contained within the model are the dispersal and deposition of ash, the outputs obtained from running the model, if designed, would be the total amount of fine ash contained in the eruption column, distance travelled by ash and ash thickness at surface.

The 'Consequence Analysis' of Variables Affecting the Extent of Damage Caused by Butane Vapor Cloud Explosions (부탄가스 증기운폭발의 피해범위에 영향을 미치는 변수에 관한 고찰)

  • Char Soon-Chul;Choo Kwang-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.1-7
    • /
    • 2001
  • This paper presents a 'consequence analysis' for vapor cloud explosions caused by heavy gas leakages from commercially used storage tanks at petrochemical plants. Particularly, this paper emphasizes on evaluating the results of various vapor cloud explosion accidents from Butane storage tanks. Also this paper analyses the impact of variables on the accidents in order to acquire the optimum conditions for variables. $SuperChems^{TM}$ Professional Edition was applied to analyse the impact (If atmospheric and other variables in the situation where vapor cloud continuously disperses from the ground level. Under the assumption that practical operating conditions are selected as a standard condition, and Butane leaks from the storage tank for 15 minutes, the results show that the maximum distance of LFL (Lower Flammable Limit) was 52 meters and overpressure by the vapor cloud explosion was 1 psi at 128.2 meters. It is observed that the impact of the variables on accidental Butane storage tank leakage mainly varied upon atmospheric stability, wind velocity, pipe line size, visible length, etc., and changes in the simulation result occurred as the variables varied. The maximum distance of the LFL (Lower Flammable Limit) increased as the visible length became shorter, the size of the leak became larger, the wind velocity was decreased, and the climatic conditions became more stable. Thus, by analysing the variables that influence the simulation results of explosions of Butane storage tanks containing heavy gases, I am presenting the most appropriate method for 'consequence analysis' and the selection of standards for suitable values of variables, to obtain the most optimal conditions for the best results.

  • PDF

State-of-the-art Studies on Infrasound Monitoring in Korea (국내 인프라사운드 관측기술의 최신 연구 동향)

  • Che, Il-Young;Lee, Hee-Il;Jeon, Jeong-Soo;Shin, In-Cheul;Chi, Heon-Cheol
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.286-294
    • /
    • 2010
  • Korea Institute of Geoscience and Mineral Resources (KIGAM) has installed and operated seven seismoacoustic (infrasound) arrays as well as seismic stations in Korea. The seismo-acoustic array, which consists of co-located seismometers and micro-barometers, can observe both seismic and infrasonic signals from distant explosive phenomena. The infrasound is defined as low frequency (<20 Hz) acoustic waves in atmosphere. In particular, it can be detectable at long distance due to its low energy attenuation during propagation in atmosphere. KIGAM adopted the infrasound technology to discriminate surface explosions from earthquakes only because the surface explosion generally generates infrasound following seismic signal. In addition to surface explosions, these arrays have detected diverse geophysically natural and artificial phenomena, such as infrasound signal from the North Korean nuclear test. This review introduced the state-of-the-art studies and examples of infrasonic signals in and around the Korean Peninsula. In conclusion, infrasound technology would be clearly accepted itself as a new Earth monitoring technology by expanding its detectable regime to lithosphere-Earth surface-atmosphere. In future, an advanced technology, which allows to analyze seismic and infrasonic wave fields together, will enlarge the understanding of geophysical phenomena and be used as a robust analysis method for remote explosive phenomena in the broad infrasound regime.

The Changes of UV-B Radiation at the Surface due to Stratospheric Aerosols (성층권 에어로졸에 의한 지표면 UV-B 복사량 변동)

  • Jai-Ho Oh;Joon-Hee Jung;Jeong-Woo Kim
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.21 no.1
    • /
    • pp.31-46
    • /
    • 1993
  • A radiative transfer model with two-stream/delta-Eddington approximation has been developed to calculate the vertical distributions of atmospheric heating rates and radiative fluxes. The performance of the model has been evaluated by comparison with the results of ICRCCM (Intercomparison of radiative codes in climate models). It has been demonstrated that the presented model has a capability to calculate the solar radiation not only accurately but also economically. The characteristics of ultraviolet-B radiation (UV-B; 280-320nm) are examined by comparison of relation between the flux at the top of atmosphere and that at the surface. The relation of UV-B is quadratic due to the strong ozone absorption in this band. Also, the dependence of the UV-B radiation on the stratospheric ozone depletion and stratospheric aerosol haze due to volcanic eruption on the stratospheric ozone depletion and stratospheric aerosol haze due to volcanic eruption has been tested with various solar zenith angles. The surface UV-B increases as the solar zenith angle increases. The existence of stratospheric aerosols causes an increase in the planetary albedo due to the aerosols' backscattering. The planetary albedo with aerosol's effect has been increases as the solar zenith angle is not sensitive. It may be caused by the fact that the aerosols' scattering effect becomes saturated with the relatively long path length in a large solar zenith angle. Finally, the regional impact of stratospheric aerosols due to volcanic eruption on the intensity of UV-B radiation at the surface has been estimated. A direct effect is that the flux is diminished at the low latitudes, while it is enhanced in the high latitudes by the aerosols' photon trap or twilight effect. In the high latitudes, both aerosols' scattering and ozone absorption have strong and opposite impacts to the surface UV-B radiation is located at the mid-latitudes during spring season in both hemispheres.

  • PDF

Analysis of Electromagnetic Pulse Coupling to Twisted Cable Using Chain Matrix (Chain Matrix를 이용한 Twisted Cable의 EMP(Electromagnetic Pulse) 결합 해석)

  • Cho, Jea-Hoon;Lee, Jin-Ho;Kim, Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.734-743
    • /
    • 2010
  • In this paper, we analyzed the EMP coupling for the nonuniform transmission lines, such as twisted cables, using the chain matrix algorithm and the multi-conductor analysis. The BLT method is widely used for the EMP coupling analysis of the transmission line, however, it is difficult to apply to the nonuniform transmission lines. In order to analyze the EMP coupling of nonuniform transmission lines, the whole nonuniform transmission line is divided into incremental uniform line sections of the finite numbers, and the coupling in each small sections is now summed up to get the EMP coupling effect of the entire nonuniform transmission line. To verify the proposed EMP coupling analysis method, the result of the EMP coupling simulation is compared with the solution of BLT equations for a uniform transmission line case. The proposed method is applied to the twisted cable over ground in case of being illuminated by the HEMP in order to analyze the EMP coupling.

Some Evidences for Glacial Landforms on the Baekdusan and Its Implications to Quaternary Volcanic Eruptions (백두산 빙하지형의 존재 가능성과 제4기 화산활동과의 관계)

  • Lee, Sung-Ee;Seong, Yeong-Bae;Kang, Hee-Cheol;Choi, Kwang-Hee
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.2
    • /
    • pp.159-178
    • /
    • 2012
  • Since the suggestions on the paleo-glacial landforms in and around the northern high mountains of Korean Peninsula by some western and Japanese scientists in the early 1900s, the likelihood of the glacier existence in the Baekdusan over the Quaternary glacial period has been had in common among most of the Korean geomorphologists. In the other meaning, some have cast doubt on the likelihood the paleo-glacier in the Baekdusan because there has been no unequivocal evidences for the glacier such as striation, moraines, except morphologic characteristic landforms possibly related to glacier. Here we show some evidences for the existence of the glacier in the Baekdusan and their cosmogenic $^{36}Cl$ exposure ages over the late Quaternary and would put forward a model on the Quaternary landscape evolution of the Baekdusan, with a focus on the relationship of 1000 AD explosive eruption and the glacial landforms. The exposure ages constrained by cosmogenic $^{36}Cl$ abundances of the col surface of the western slope located below the glacier yield 46~26 ka, which is inphase with the last glacial period. Given all the evidences above, we can draw a conclusion that the glacier existed on the Baekdusan over the late Quaternary and the style of glaciation changed from extensive ice cap through valley glacier to restricted cirque.

  • PDF

Prediction of Hydrodynamic Behavior of Unsaturated Ground Due to Hydrogen Gas Leakage in a Low-depth Underground Hydrogen Storage Facility (저심도 지중 수소저장시설에서의 수소가스 누출에 따른 불포화 지반의 수리-역학적 거동 예측 연구)

  • Go, Gyu-Hyun;Jeon, Jun-Seo;Kim, YoungSeok;Kim, Hee Won;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.107-118
    • /
    • 2022
  • The social need for stable hydrogen storage technologies that respond to the increasing demand for hydrogen energy is increasing. Among them, underground hydrogen storage is recognized as the most economical and reasonable storage method because of its vast hydrogen storage capacity. In Korea, low-depth hydrogen storage using artificial protective structures is being considered. Further, establishing corresponding safety standards and ground stability evaluation is becoming essential. This study evaluated the hydro-mechanical behavior of the ground during a hydrogen gas leak from a low-depth underground hydrogen storage facility through the HM coupled analysis model. The predictive reliability of the simulation model was verified through benchmark experiments. A parameter study was performed using a metamodel to analyze the sensitivity of factors affecting the surface uplift caused by the upward infiltration of high-pressure hydrogen gas. Accordingly, it was confirmed that the elastic modulus of the ground was the largest. The simulation results are considered to be valuable primary data for evaluating the complex analysis of hydrogen gas explosions as well as hydrogen gas leaks in the future.