DOI QR코드

DOI QR Code

Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel

  • Received : 2018.08.04
  • Accepted : 2019.09.07
  • Published : 2019.09.25

Abstract

Using first-order shear deformation theory (FSDT), a semi-analytical solution is employed to analyze creep damage and remaining life assessment of 304L austenitic stainless steel thick (304L ASS) cylindrical pressure vessels with variable thickness subjected to the temperature gradient and internal non-uniform pressure. Damages are obtained in thick cylinder using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The thermo-elastic creep response of the material is described by Norton's law. The novelty of the present work is that it seeks to investigate creep damage and life assessment of the vessels with variable thickness made of 304L ASS using LMP based on first-order shear deformation theory. A numerical solution using finite element method (FEM) is also presented and good agreement is found. It is shown that temperature gradient and non-uniform pressure have significant influences on the creep damages and remaining life of the vessel.

Keywords

References

  1. Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., Int. J., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693
  2. Afshin, A., Nejad, M.Z. and Dastani, K. (2017), "Transient thermoelastic analysis of FGM rotating thick cylindrical pressure vessels under arbitrary boundary and initial conditions", J. Comput. Appl. Mech., 48(1), 15-26. https://doi.org/10.22059/JCAMECH.2017.233643.144
  3. Altenbach, H., Gorash, Y. and Naumenko, K. (2008), "Steady-state creep of a pressurized thick cylinder in both the linear and the power law ranges", Acta Mech., 195, 263-274. https://doi.org/10.1007/s00707-007-0546-5
  4. Carroll, B.E., Otis, R.A., Borgonia, J.P., Suh, J.-o., Dillon, R.P., Shapiro, A.A., Hofmann, D.C., Liu, Z.-K. and Beese, A.M. (2016), "Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling", Acta Mater., 108, 46-54. https://doi.org/10.1016/j.actamat.2016.02.019
  5. Dehghan, M., Nejad, M.Z. and Moosaie, A. (2016), "Thermoelectro-elastic analysis of functionally graded piezoelectric shells of revolution: Governing equations and solutions for some simple cases", Int. J. Eng. Sci., 104, 34-61. https://doi.org/10.1016/j.ijengsci.2016.04.007
  6. Dung, D.V. and Dong, D.T. (2016), "Post-buckling analysis of functionally graded doubly curved shallow shells reinforced by FGM stiffeners with temperature-dependent material and stiffener properties based on TSDT", Mech. Res. Commun., 78, 28-41. https://doi.org/10.1016/j.mechrescom.2016.09.008
  7. Fatehi, P. and Nejad, M.Z. (2014), "Effects of material gradients on onset of yield in FGM rotating thick cylindrical shells", Int. J. Appl. Mech., 6(4), Article Number: 1450038. https://doi.org/10.1142/S1758825114500380
  8. Ghannad, M. and Nejad, M.Z. (2010), "Elastic analysis of pressurized thick hollow cylindrical shells with clampedclamped ends", Mechanika, 85(5), 11-18. https://doi.org/10.5755/j01.mech.85.5.15963
  9. Ghannad, M. Nejad, M.Z. and Rahimi, G.H. (2009), "Elastic solution of axisymmetric thick truncated conical shells based on first-order shear deformation theory", Mechanika, 79(5), 13-20. https://doi.org/10.5755/j01.mech.79.5.15476
  10. Ghannad, M., Nejad, M.Z., Rahimi, G.H. and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., Int. J., 43(1), 105-126. https://doi.org/10.12989/sem.2012.43.1.105
  11. Ghannad, M., Rahimi, G.H. and Nejad, M.Z. (2013), "Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials", Compos. Part B-Eng., 45(1), 388-396. https://doi.org/10.1016/j.compositesb.2012.09.043
  12. Gharibi, M., Nejad, M.Z. and Hadi, A. (2017), "Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius", J. Comput. Appl. Mech., 48(1), 89-98. https://doi.org/10.22059/jcamech.2017.233633.143
  13. Hadi, A., Nejad, M.Z.. Rastgoo, A. and Hosseini, M. (2018a), "Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory", Steel Compos. Struct., Int. J., 26(6), 663-672. https://doi.org/10.12989/scs.2018.26.6.663
  14. Hadi, A., Nejad, M.Z. and Hosseini, M. (2018b), "Vibrations of three-dimensionally graded nanobeams", Int. J. Eng. Sci., 128, 12-23. https://doi.org/10.1016/j.ijengsci.2018.03.004
  15. Jabbari, M., Nejad, M.Z. and Ghannad, M. (2015), "Thermoelastic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness under mechanical loading", Int. J. Eng. Sci., 96, 1-18. https://doi.org/10.1016/j.ijengsci.2015.07.005
  16. Jabbari, M., Nejad, M.Z. and Ghannad, M. (2016), "Thermoelastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness", Compos. Part B-Eng., 96, 20-34. https://doi.org/10.1016/j.compositesb.2016.04.026
  17. Jandaghian, A.A. and Rahmani, O. (2017), "Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions", Steel Compos. Struct., Int. J., 25(1), 67-78. https://doi.org/10.12989/scs.2017.25.1.067
  18. Jemielita, G. (2002), "Coefficients of shear correction in transversely nonhomogeneous moderately thick plates", J. Theor. Appl. Mech., 40, 73-84.
  19. Kassner, M., Smith, K. and Campbell, C. (2015), "Lowtemperature creep in pure metals and alloys", J. Mater. Sci., 50, 6539-6551. https://doi.org/10.1007/s10853-015-9219-2
  20. Kashkoli, M.D. and Nejad, M.Z. (2014), "Effect of heat flux on creep stresses of thick-walled cylindrical pressure vessels", J. Appl. Res. Technol., 12(3), 585-597. https://doi.org/10.1016/S1665-6423(14)71637-2
  21. Kashkoli, M.D. and Nejad, M.Z. (2015), "Time-dependent thermoelastic creep analysis of thick-walled spherical pressure vessels made of functionally graded materials", J. Theor. Appl. Mech., 53(4), 1053-1065. https://doi.org/10.15632/jtam-pl.53.4.1053
  22. Kashkoli, M.D. and Nejad, M.Z. (2018), "Time-dependent creep analysis and life assessment of 304 L austenitic stainless steel thick pressurized truncated conical shells", Steel Compos. Struct., Int. J., 28(3), 349-362. https://doi.org/10.12989/scs.2018.28.3.349
  23. Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2017a), "Timedependent creep analysis for life assessment of cylindrical vessels using first order shear deformation theory", J. Mech., 33(4), 461-474. https://doi.org/10.1017/jmech.2017.6
  24. Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2017b), "Timedependent thermomechanical creep behavior of FGM thick hollow cylindrical shells under non-uniform internal pressure", Int. J. Appl. Mech., 9(6), Article Number: 1750086. https://doi.org/10.1142/S1758825117500867
  25. Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2018), "Thermomechanical creep analysis of FGM thick cylindrical pressure vessels with variable thickness", Int. J. Appl. Mech., 10(1), Article Number: 1850008. https://doi.org/10.1142/S1758825118500084
  26. Khanna, K., Gupta, V. and Nigam, S. (2017), "Creep analysis in functionally graded rotating disc using tresca criterion and comparison with von-mises criterion", Mater. Today, 4, 2431-2438. https://doi.org/10.1016/j.matpr.2017.02.094
  27. Kobelev, V. (2014), "Some basic solutions for nonlinear creep", Int. J. Solids Struct., 51, 3372-3381. https://doi.org/10.1016/j.ijsolstr.2014.05.029
  28. Larson, F.R. (1952), "A time temperature relationship for rupture and creep stress", Trans. ASME, 765-775.
  29. Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011
  30. Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014
  31. Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
  32. Loghman, A. and Wahab, M.A. (1996), "Creep damage simulation of thick-walled tubes using the Θ projection concept", Int. J. Pres. Ves. Pip., 67, 105-111. https://doi.org/10.1016/0308-0161(94)00175-8
  33. Loghman, A., Arani, A.G., Amir, S. and Vajedi, A. (2010), "Magnetothermoelastic creep analysis of functionally graded cylinders", Int. J. Pres. Ves. Pip., 87, 389-395. https://doi.org/10.1016/j.ijpvp.2010.05.001
  34. Loghman, A., Aleayoub, S. and Sadi, M.H. (2012), "Timedependent magnetothermoelastic creep modeling of FGM spheres using method of successive elastic solution", Appl. Math. Model., 36, 836-845. https://doi.org/10.1016/j.apm.2011.07.038
  35. Lopez, H. and Zhang, H. (2014), "Nanoceria coating imperfections and their effect on the high-temperature oxidation resistance of a 304 stainless steel", J. Mater. Sci., 49, 277-286. https://doi.org/10.1007/s10853-013-7702-1
  36. Mahmoud, S.R. (2017), "A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations", Steel Compos. Struct., Int. J., 25(6), 717-726. https://doi.org/10.12989/scs.2017.25.6.717
  37. Mazarei, Z., Nejad, M.Z. and Hadi, A. (2016), "Thermo-elastoplastic analysis of thick-walled spherical pressure vessels made of functionally graded materials", Int. J. Appl. Mech., 8(4), Article Number: 1650054. https://doi.org/10.1142/S175882511650054X
  38. Naumenko, K. and Altenbach, H. (2007), Modeling of Creep for Structural Analysis, Springer-Verlag Berlin Heidelberg, Berlin, Germany.
  39. Nejad, M.Z. and Fatehi, P. (2015), "Exact elasto-plastic analysis of rotating thick-walled cylindrical pressure vessels made of functionally graded materials", Int. J. Eng. Sci., 86, 26-43. https://doi.org/10.1016/j.ijengsci.2014.10.002
  40. Nejad, M.Z. and Hadi, A. (2016a), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011
  41. Nejad, M.Z. and Hadi, A. (2016b), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005
  42. Nejad, M.Z. and Kashkoli, M.D. (2014), "Time-dependent thermocreep analysis of rotating FGM thick-walled cylindrical pressure vessels under heat flux", Int. J. Eng. Sci., 82, 222-237. https://doi.org/10.1016/j.ijengsci.2014.06.006
  43. Nejad, M.Z. and Rahimii, G.H. (2009a), "Elastic analysis of FGM rotating cylindrical pressure vessels", J. Chin. Inst. Eng., 33(4), 525-530. https://doi.org/10.1080/02533839.2010.9671640
  44. Nejad, M.Z. and Rahimii, G.H. (2009b), "Deformations and stresses in rotating FGM pressurized thick hollow cylinder under thermal load", Sci. Res. Essays., 4(3), 131-140.
  45. Nejad, M.Z., Rahimii, G.H. and Ghannad, M. (2009), "Set of field equations for thick shell of revolution made of functionally graded materials in curvilinear coordinate system", Mechanika, 77(3), 18-26. https://doi.org/10.5755/j01.mech.77.3.15232
  46. Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014), "Exact elastoplastic analysis of rotating disks made of functionally graded materials", Int. J. Eng. Sci., 85, 47-57. https://doi.org/10.1016/j.ijengsci.2014.07.009
  47. Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015a), "Elastic analysis of axially functionally graded rotating thick cylinder with variable thickness under non-uniform arbitrarily pressure loading", Int. J. Eng. Sci., 89, 86-99. https://doi.org/10.1016/j.ijengsci.2014.12.004
  48. Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015b), "Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading", Compos. Struct., 122, 561-569. https://doi.org/10.1016/j.compstruct.2014.12.028
  49. Nejad, M.Z., Hoseini, Z., Niknejad, A. and Ghannad, M. (2015c), "Steady-state creep deformations and stresses in FGM rotating thick cylindrical pressure vessels", J. Mech., 31(1), 1-6. https://doi.org/10.1017/jmech.2014.70
  50. Nejad, M.Z. Hadi, A. and Rastgoo, A. (2016), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001
  51. Nejad, M.Z., Hadi, A. and Farajpour, A. (2017a), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., Int. J., 63(2), 161-169. https://doi.org/10.12989/sem.2017.63.2.161
  52. Nejad, M.Z., Jabbari, M. and Ghannad, M. (2017b), "A general disk form formulation for thermo-elastic analysis of functionally graded thick shells of revolution with arbitrary curvature and variable thickness", Acta Mech., 228(1), 215-231. https://doi.org/10.1007/s00707-016-1709-z
  53. Nejad, M.Z., Jabbari, M. and Hadi, A. (2017c), "A review of functionally graded thick cylindrical and conical shells", J. Comput. Appl. Mech., 48(2), 357-370. https://doi.org/10.22059/JCAMECH.2017.247963.220
  54. Nejad, M.Z., Taghizadeh, T., Mehrabadi, S.J. and Herasati, S. (2017d), "Elastic Analysis of Carbon Nanotube-Reinforced Composite Plates with Piezoelectric Layers Using Shear Deformation Theory", Int. J. Appl. Mech., 9(1), Article Number: 1750011. https://doi.org/10.1142/S1758825117500119
  55. Nejad, M.Z., Alamzadeh, N. and Hadi, A. (2018a), "Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition", Compos. Part B-Eng., 154, 410-422. https://doi.org/10.1016/j.compositesb.2018.09.022
  56. Nejad, M.Z., Hadi, A., Omidvaeri, A. and Rastgoo, A. (2018b), "Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's nonlocal elasticity theory", Struct. Eng. Mech., Int. J., 67(4), 417-425. https://doi.org/10.12989/sem.2018.67.4.417
  57. Robinson, E.L. (1952), "Effect of temperature variation on the long-time rupture strength of steels", Transaction ASME, 74, 777-781.
  58. Samantaray, D., Borah, U., Bhaduri, A. and Dutta, P. (2016), "Effect of semi-solid heat treatment on elevated temperature plasticity of 304L stainless steel", J. Mater. Sci., 51, 4306-4319. https://doi.org/10.1007/s10853-016-9740-y
  59. Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017), "A novel and simple higher order shear deformation theory for stability and vibration offunctionally graded sandwich plate", Steel Compos. Struct., Int. J., 25(4), 389-401. https://doi.org/10.12989/scs.2017.25.4.389
  60. Simsek, M. (2016), "Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions", Compos. Struct., 149, 304-314. https://doi.org/10.1016/j.compstruct.2016.04.034
  61. Singh, T. and Gupta, V. (2010), "Modeling steady state creep in functionally graded thick cylinder subjected to internal pressure", J. Compos. Mater., 44, 1317-1333. https://doi.org/10.1177/0021998309353214
  62. Singh, T. and Gupta, V. (2011), "Effect of anisotropy on steady state creep in functionally graded cylinder", Compos. Struct., 93, 747-758. https://doi.org/10.1016/j.compstruct.2010.08.005
  63. Singh, T. and Gupta, V. (2012), "Steady-state creep analysis of a functionally graded thick cylinder subjected to internal pressure and thermal gradient", Int. J. Mater. Res., 103, 1042-1051. https://doi.org/10.3139/146.110738
  64. Singh, T. and Gupta, V. (2014), "Analysis of steady state creep in whisker reinforced functionally graded thick cylinder subjected to internal pressure by considering residual stress", Mech. Adv. Mater. Struct., 21, 384-392. https://doi.org/10.1080/15376494.2012.697600
  65. Sofiyev, A.H. (2017), "The stability analysis of shear deformable FGM sandwich conical shells under the axial load", Compos. Struct., 176, 803-811. https://doi.org/10.1016/j.compstruct.2017.06.022
  66. Sofiyev, A.H. (2018a), "Application of the first order shear deformation theory to the solution of free vibration problem for laminated conical shells", Compos. Struct., 188, 340-346. https://doi.org/10.1016/j.compstruct.2018.01.016
  67. Sofiyev, A.H. (2018b), "Application of the FOSDT to the solution of buckling problem of FGM sandwich conical shells under hydrostatic pressure", Compos. Part B-Eng., 144, 88-98. https://doi.org/10.1016/j.compositesb.2018.01.025
  68. Sofiyev, A.H. and Osmancelebioglu, E. (2017), "The free vibration of sandwich truncated conical shells containing functionally graded layers within the shear deformation theory", Compos. Part B-Eng., 120, 197-211. https://doi.org/10.1016/j.compositesb.2017.03.054
  69. Tahami, F.V., Sorkhabi, A.H.D. and Biglari, F.R. (2010), "Creep constitutive equations for cold-drawn 304L stainless steel", Mat. Sci. Eng: A, 527, 4993-4999. https://doi.org/10.1016/j.msea.2010.04.055
  70. Taylor, A., Cizek, P. and Hodgson, P. (2011), "Comparison of 304 stainless steel and Ni-30 wt.% Fe as potential model alloys to study the behaviour of austenite during thermomechanical processing", Acta Mater., 59, 5832-5844. https://doi.org/10.1016/j.actamat.2011.05.060
  71. Valluri, J.S., Balasubramaniam, K. and Prakash, R.V. (2010), "Creep damage characterization using non-linear ultrasonic techniques", Acta Mater., 58, 2079-2090. https://doi.org/10.1016/j.actamat.2009.11.050
  72. Viswanathan, R. (1989), Damage Mechanisms and Life Assessment of High Temperature Components, ASM International, Ohio, USA.
  73. Wang, Z., Palmer, T.A. and Beese, A.M. (2016), "Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing", Acta Mater., 110, 226-235. https://doi.org/10.1016/j.actamat.2016.03.019
  74. Yang, Y. (2000), "Time-dependent stress analysis in functionally graded materials", Int. J. Sol. Struct., 37, 7593-7608. https://doi.org/10.1016/S0020-7683(99)00310-8
  75. Yao, H.T., Xuan, F.Z., Wang, Z. and Tu, S.T. (2007), "A review of creep analysis and design under multi-axial stress states", Nucl. Eng. Des., 237, 1969-1986. https://doi.org/10.1016/j.nucengdes.2007.02.003
  76. You, L., Ou, H. and Zheng, Z. (2007), "Creep deformations and stresses in thick-walled cylindrical vessels of functionally graded materials subjected to internal pressure", Compos. Struct., 78, 285-291. https://doi.org/10.1016/j.compstruct.2005.10.002

Cited by

  1. Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels vol.38, pp.2, 2021, https://doi.org/10.12989/scs.2021.38.2.189