References
- Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., Int. J., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693
- Afshin, A., Nejad, M.Z. and Dastani, K. (2017), "Transient thermoelastic analysis of FGM rotating thick cylindrical pressure vessels under arbitrary boundary and initial conditions", J. Comput. Appl. Mech., 48(1), 15-26. https://doi.org/10.22059/JCAMECH.2017.233643.144
- Altenbach, H., Gorash, Y. and Naumenko, K. (2008), "Steady-state creep of a pressurized thick cylinder in both the linear and the power law ranges", Acta Mech., 195, 263-274. https://doi.org/10.1007/s00707-007-0546-5
- Carroll, B.E., Otis, R.A., Borgonia, J.P., Suh, J.-o., Dillon, R.P., Shapiro, A.A., Hofmann, D.C., Liu, Z.-K. and Beese, A.M. (2016), "Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling", Acta Mater., 108, 46-54. https://doi.org/10.1016/j.actamat.2016.02.019
- Dehghan, M., Nejad, M.Z. and Moosaie, A. (2016), "Thermoelectro-elastic analysis of functionally graded piezoelectric shells of revolution: Governing equations and solutions for some simple cases", Int. J. Eng. Sci., 104, 34-61. https://doi.org/10.1016/j.ijengsci.2016.04.007
- Dung, D.V. and Dong, D.T. (2016), "Post-buckling analysis of functionally graded doubly curved shallow shells reinforced by FGM stiffeners with temperature-dependent material and stiffener properties based on TSDT", Mech. Res. Commun., 78, 28-41. https://doi.org/10.1016/j.mechrescom.2016.09.008
- Fatehi, P. and Nejad, M.Z. (2014), "Effects of material gradients on onset of yield in FGM rotating thick cylindrical shells", Int. J. Appl. Mech., 6(4), Article Number: 1450038. https://doi.org/10.1142/S1758825114500380
- Ghannad, M. and Nejad, M.Z. (2010), "Elastic analysis of pressurized thick hollow cylindrical shells with clampedclamped ends", Mechanika, 85(5), 11-18. https://doi.org/10.5755/j01.mech.85.5.15963
- Ghannad, M. Nejad, M.Z. and Rahimi, G.H. (2009), "Elastic solution of axisymmetric thick truncated conical shells based on first-order shear deformation theory", Mechanika, 79(5), 13-20. https://doi.org/10.5755/j01.mech.79.5.15476
- Ghannad, M., Nejad, M.Z., Rahimi, G.H. and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., Int. J., 43(1), 105-126. https://doi.org/10.12989/sem.2012.43.1.105
- Ghannad, M., Rahimi, G.H. and Nejad, M.Z. (2013), "Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials", Compos. Part B-Eng., 45(1), 388-396. https://doi.org/10.1016/j.compositesb.2012.09.043
- Gharibi, M., Nejad, M.Z. and Hadi, A. (2017), "Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius", J. Comput. Appl. Mech., 48(1), 89-98. https://doi.org/10.22059/jcamech.2017.233633.143
- Hadi, A., Nejad, M.Z.. Rastgoo, A. and Hosseini, M. (2018a), "Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory", Steel Compos. Struct., Int. J., 26(6), 663-672. https://doi.org/10.12989/scs.2018.26.6.663
- Hadi, A., Nejad, M.Z. and Hosseini, M. (2018b), "Vibrations of three-dimensionally graded nanobeams", Int. J. Eng. Sci., 128, 12-23. https://doi.org/10.1016/j.ijengsci.2018.03.004
- Jabbari, M., Nejad, M.Z. and Ghannad, M. (2015), "Thermoelastic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness under mechanical loading", Int. J. Eng. Sci., 96, 1-18. https://doi.org/10.1016/j.ijengsci.2015.07.005
- Jabbari, M., Nejad, M.Z. and Ghannad, M. (2016), "Thermoelastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness", Compos. Part B-Eng., 96, 20-34. https://doi.org/10.1016/j.compositesb.2016.04.026
- Jandaghian, A.A. and Rahmani, O. (2017), "Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions", Steel Compos. Struct., Int. J., 25(1), 67-78. https://doi.org/10.12989/scs.2017.25.1.067
- Jemielita, G. (2002), "Coefficients of shear correction in transversely nonhomogeneous moderately thick plates", J. Theor. Appl. Mech., 40, 73-84.
- Kassner, M., Smith, K. and Campbell, C. (2015), "Lowtemperature creep in pure metals and alloys", J. Mater. Sci., 50, 6539-6551. https://doi.org/10.1007/s10853-015-9219-2
- Kashkoli, M.D. and Nejad, M.Z. (2014), "Effect of heat flux on creep stresses of thick-walled cylindrical pressure vessels", J. Appl. Res. Technol., 12(3), 585-597. https://doi.org/10.1016/S1665-6423(14)71637-2
- Kashkoli, M.D. and Nejad, M.Z. (2015), "Time-dependent thermoelastic creep analysis of thick-walled spherical pressure vessels made of functionally graded materials", J. Theor. Appl. Mech., 53(4), 1053-1065. https://doi.org/10.15632/jtam-pl.53.4.1053
- Kashkoli, M.D. and Nejad, M.Z. (2018), "Time-dependent creep analysis and life assessment of 304 L austenitic stainless steel thick pressurized truncated conical shells", Steel Compos. Struct., Int. J., 28(3), 349-362. https://doi.org/10.12989/scs.2018.28.3.349
- Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2017a), "Timedependent creep analysis for life assessment of cylindrical vessels using first order shear deformation theory", J. Mech., 33(4), 461-474. https://doi.org/10.1017/jmech.2017.6
- Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2017b), "Timedependent thermomechanical creep behavior of FGM thick hollow cylindrical shells under non-uniform internal pressure", Int. J. Appl. Mech., 9(6), Article Number: 1750086. https://doi.org/10.1142/S1758825117500867
- Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2018), "Thermomechanical creep analysis of FGM thick cylindrical pressure vessels with variable thickness", Int. J. Appl. Mech., 10(1), Article Number: 1850008. https://doi.org/10.1142/S1758825118500084
- Khanna, K., Gupta, V. and Nigam, S. (2017), "Creep analysis in functionally graded rotating disc using tresca criterion and comparison with von-mises criterion", Mater. Today, 4, 2431-2438. https://doi.org/10.1016/j.matpr.2017.02.094
- Kobelev, V. (2014), "Some basic solutions for nonlinear creep", Int. J. Solids Struct., 51, 3372-3381. https://doi.org/10.1016/j.ijsolstr.2014.05.029
- Larson, F.R. (1952), "A time temperature relationship for rupture and creep stress", Trans. ASME, 765-775.
- Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011
- Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014
- Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
- Loghman, A. and Wahab, M.A. (1996), "Creep damage simulation of thick-walled tubes using the Θ projection concept", Int. J. Pres. Ves. Pip., 67, 105-111. https://doi.org/10.1016/0308-0161(94)00175-8
- Loghman, A., Arani, A.G., Amir, S. and Vajedi, A. (2010), "Magnetothermoelastic creep analysis of functionally graded cylinders", Int. J. Pres. Ves. Pip., 87, 389-395. https://doi.org/10.1016/j.ijpvp.2010.05.001
- Loghman, A., Aleayoub, S. and Sadi, M.H. (2012), "Timedependent magnetothermoelastic creep modeling of FGM spheres using method of successive elastic solution", Appl. Math. Model., 36, 836-845. https://doi.org/10.1016/j.apm.2011.07.038
- Lopez, H. and Zhang, H. (2014), "Nanoceria coating imperfections and their effect on the high-temperature oxidation resistance of a 304 stainless steel", J. Mater. Sci., 49, 277-286. https://doi.org/10.1007/s10853-013-7702-1
- Mahmoud, S.R. (2017), "A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations", Steel Compos. Struct., Int. J., 25(6), 717-726. https://doi.org/10.12989/scs.2017.25.6.717
- Mazarei, Z., Nejad, M.Z. and Hadi, A. (2016), "Thermo-elastoplastic analysis of thick-walled spherical pressure vessels made of functionally graded materials", Int. J. Appl. Mech., 8(4), Article Number: 1650054. https://doi.org/10.1142/S175882511650054X
- Naumenko, K. and Altenbach, H. (2007), Modeling of Creep for Structural Analysis, Springer-Verlag Berlin Heidelberg, Berlin, Germany.
- Nejad, M.Z. and Fatehi, P. (2015), "Exact elasto-plastic analysis of rotating thick-walled cylindrical pressure vessels made of functionally graded materials", Int. J. Eng. Sci., 86, 26-43. https://doi.org/10.1016/j.ijengsci.2014.10.002
- Nejad, M.Z. and Hadi, A. (2016a), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011
- Nejad, M.Z. and Hadi, A. (2016b), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005
- Nejad, M.Z. and Kashkoli, M.D. (2014), "Time-dependent thermocreep analysis of rotating FGM thick-walled cylindrical pressure vessels under heat flux", Int. J. Eng. Sci., 82, 222-237. https://doi.org/10.1016/j.ijengsci.2014.06.006
- Nejad, M.Z. and Rahimii, G.H. (2009a), "Elastic analysis of FGM rotating cylindrical pressure vessels", J. Chin. Inst. Eng., 33(4), 525-530. https://doi.org/10.1080/02533839.2010.9671640
- Nejad, M.Z. and Rahimii, G.H. (2009b), "Deformations and stresses in rotating FGM pressurized thick hollow cylinder under thermal load", Sci. Res. Essays., 4(3), 131-140.
- Nejad, M.Z., Rahimii, G.H. and Ghannad, M. (2009), "Set of field equations for thick shell of revolution made of functionally graded materials in curvilinear coordinate system", Mechanika, 77(3), 18-26. https://doi.org/10.5755/j01.mech.77.3.15232
- Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014), "Exact elastoplastic analysis of rotating disks made of functionally graded materials", Int. J. Eng. Sci., 85, 47-57. https://doi.org/10.1016/j.ijengsci.2014.07.009
- Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015a), "Elastic analysis of axially functionally graded rotating thick cylinder with variable thickness under non-uniform arbitrarily pressure loading", Int. J. Eng. Sci., 89, 86-99. https://doi.org/10.1016/j.ijengsci.2014.12.004
- Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015b), "Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading", Compos. Struct., 122, 561-569. https://doi.org/10.1016/j.compstruct.2014.12.028
- Nejad, M.Z., Hoseini, Z., Niknejad, A. and Ghannad, M. (2015c), "Steady-state creep deformations and stresses in FGM rotating thick cylindrical pressure vessels", J. Mech., 31(1), 1-6. https://doi.org/10.1017/jmech.2014.70
- Nejad, M.Z. Hadi, A. and Rastgoo, A. (2016), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001
- Nejad, M.Z., Hadi, A. and Farajpour, A. (2017a), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., Int. J., 63(2), 161-169. https://doi.org/10.12989/sem.2017.63.2.161
- Nejad, M.Z., Jabbari, M. and Ghannad, M. (2017b), "A general disk form formulation for thermo-elastic analysis of functionally graded thick shells of revolution with arbitrary curvature and variable thickness", Acta Mech., 228(1), 215-231. https://doi.org/10.1007/s00707-016-1709-z
- Nejad, M.Z., Jabbari, M. and Hadi, A. (2017c), "A review of functionally graded thick cylindrical and conical shells", J. Comput. Appl. Mech., 48(2), 357-370. https://doi.org/10.22059/JCAMECH.2017.247963.220
- Nejad, M.Z., Taghizadeh, T., Mehrabadi, S.J. and Herasati, S. (2017d), "Elastic Analysis of Carbon Nanotube-Reinforced Composite Plates with Piezoelectric Layers Using Shear Deformation Theory", Int. J. Appl. Mech., 9(1), Article Number: 1750011. https://doi.org/10.1142/S1758825117500119
- Nejad, M.Z., Alamzadeh, N. and Hadi, A. (2018a), "Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition", Compos. Part B-Eng., 154, 410-422. https://doi.org/10.1016/j.compositesb.2018.09.022
- Nejad, M.Z., Hadi, A., Omidvaeri, A. and Rastgoo, A. (2018b), "Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's nonlocal elasticity theory", Struct. Eng. Mech., Int. J., 67(4), 417-425. https://doi.org/10.12989/sem.2018.67.4.417
- Robinson, E.L. (1952), "Effect of temperature variation on the long-time rupture strength of steels", Transaction ASME, 74, 777-781.
- Samantaray, D., Borah, U., Bhaduri, A. and Dutta, P. (2016), "Effect of semi-solid heat treatment on elevated temperature plasticity of 304L stainless steel", J. Mater. Sci., 51, 4306-4319. https://doi.org/10.1007/s10853-016-9740-y
- Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017), "A novel and simple higher order shear deformation theory for stability and vibration offunctionally graded sandwich plate", Steel Compos. Struct., Int. J., 25(4), 389-401. https://doi.org/10.12989/scs.2017.25.4.389
- Simsek, M. (2016), "Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions", Compos. Struct., 149, 304-314. https://doi.org/10.1016/j.compstruct.2016.04.034
- Singh, T. and Gupta, V. (2010), "Modeling steady state creep in functionally graded thick cylinder subjected to internal pressure", J. Compos. Mater., 44, 1317-1333. https://doi.org/10.1177/0021998309353214
- Singh, T. and Gupta, V. (2011), "Effect of anisotropy on steady state creep in functionally graded cylinder", Compos. Struct., 93, 747-758. https://doi.org/10.1016/j.compstruct.2010.08.005
- Singh, T. and Gupta, V. (2012), "Steady-state creep analysis of a functionally graded thick cylinder subjected to internal pressure and thermal gradient", Int. J. Mater. Res., 103, 1042-1051. https://doi.org/10.3139/146.110738
- Singh, T. and Gupta, V. (2014), "Analysis of steady state creep in whisker reinforced functionally graded thick cylinder subjected to internal pressure by considering residual stress", Mech. Adv. Mater. Struct., 21, 384-392. https://doi.org/10.1080/15376494.2012.697600
- Sofiyev, A.H. (2017), "The stability analysis of shear deformable FGM sandwich conical shells under the axial load", Compos. Struct., 176, 803-811. https://doi.org/10.1016/j.compstruct.2017.06.022
- Sofiyev, A.H. (2018a), "Application of the first order shear deformation theory to the solution of free vibration problem for laminated conical shells", Compos. Struct., 188, 340-346. https://doi.org/10.1016/j.compstruct.2018.01.016
- Sofiyev, A.H. (2018b), "Application of the FOSDT to the solution of buckling problem of FGM sandwich conical shells under hydrostatic pressure", Compos. Part B-Eng., 144, 88-98. https://doi.org/10.1016/j.compositesb.2018.01.025
- Sofiyev, A.H. and Osmancelebioglu, E. (2017), "The free vibration of sandwich truncated conical shells containing functionally graded layers within the shear deformation theory", Compos. Part B-Eng., 120, 197-211. https://doi.org/10.1016/j.compositesb.2017.03.054
- Tahami, F.V., Sorkhabi, A.H.D. and Biglari, F.R. (2010), "Creep constitutive equations for cold-drawn 304L stainless steel", Mat. Sci. Eng: A, 527, 4993-4999. https://doi.org/10.1016/j.msea.2010.04.055
- Taylor, A., Cizek, P. and Hodgson, P. (2011), "Comparison of 304 stainless steel and Ni-30 wt.% Fe as potential model alloys to study the behaviour of austenite during thermomechanical processing", Acta Mater., 59, 5832-5844. https://doi.org/10.1016/j.actamat.2011.05.060
- Valluri, J.S., Balasubramaniam, K. and Prakash, R.V. (2010), "Creep damage characterization using non-linear ultrasonic techniques", Acta Mater., 58, 2079-2090. https://doi.org/10.1016/j.actamat.2009.11.050
- Viswanathan, R. (1989), Damage Mechanisms and Life Assessment of High Temperature Components, ASM International, Ohio, USA.
- Wang, Z., Palmer, T.A. and Beese, A.M. (2016), "Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing", Acta Mater., 110, 226-235. https://doi.org/10.1016/j.actamat.2016.03.019
- Yang, Y. (2000), "Time-dependent stress analysis in functionally graded materials", Int. J. Sol. Struct., 37, 7593-7608. https://doi.org/10.1016/S0020-7683(99)00310-8
- Yao, H.T., Xuan, F.Z., Wang, Z. and Tu, S.T. (2007), "A review of creep analysis and design under multi-axial stress states", Nucl. Eng. Des., 237, 1969-1986. https://doi.org/10.1016/j.nucengdes.2007.02.003
- You, L., Ou, H. and Zheng, Z. (2007), "Creep deformations and stresses in thick-walled cylindrical vessels of functionally graded materials subjected to internal pressure", Compos. Struct., 78, 285-291. https://doi.org/10.1016/j.compstruct.2005.10.002
Cited by
- Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels vol.38, pp.2, 2021, https://doi.org/10.12989/scs.2021.38.2.189