DOI QR코드

DOI QR Code

Calcium Carbonate Saturation State in the Ulleung Basin, East Sea

동해 울릉분지의 탄산칼슘 포화상태

  • KIM, SO-YUN (Department of Oceanography, Pusan National University) ;
  • JEONG, SEONGHEE (Department of Oceanography, Pusan National University) ;
  • LEE, TONGSUP (Department of Oceanography, Pusan National University)
  • Received : 2019.07.01
  • Accepted : 2019.08.22
  • Published : 2019.08.31

Abstract

The calcium carbonate saturation state in the Ulleung Basin of East Sea was calculated using bottle data set of pH, dissolved inorganic carbon and total alkalinity obtained from the year 1999, 2014, 2017, and 2018 cruise. In the 2010s calcium carbonate saturation state was significantly lowered at all depth compared to the 1999 reference state. Accordingly calcite saturation horizon and aragonite saturation horizon shoaled to 500 m and 200 m, respectively. A key chemical species for the calcium carbonate saturation state, carbonate ion showed distinctive profile between upper and deep waters: it is moderately high (${\sim}175{\mu}mol\;kg^{-1}$) in upper waters and very low (< ${\sim}50{\mu}mol\;kg^{-1}$) in the deep waters. However the decreasing trend of carbonate ion concentration was pronounced in the upper water than deep waters, suggesting atmospheric $CO_2$ penetration is largely confined to the upper waters in the 2000s.

동해 울릉분지의 탄산칼슘 포화상태를 1999, 2014, 2017, 2018년도 해양 조사를 통해 수집된 pH, 용존무기탄소(DIC), 총알칼리도(TA) 자료를 이용하여 계산하였다. 1999년에 비해 2010년대에 전 수심에서 탄산염 포화상태는 유의하게 감소하였다. 2018년 현재 방해석과 선석의 포화면 수심은 각각 약 500 m와 200 m로 상승하였다. 탄산칼슘 포화상태를 결정하는 주된 화학종인 탄산이온은 상층과 심층에서 다른 분포를 보였다: 상층에서는 약 $175{\mu}mol\;kg^{-1}$로 비교적 높고, 심층에서는 $50{\mu}mol\;kg^{-1}$ 이하로 아주 낮게 나타났다. 그러나 탄산이온 농도의 감소 경향은 심층보다 상층에서 두드러졌는데, 이는 2000년대에 대기에서 이산화탄소의 침투가 주로 상층에서 일어나는 것이 반영된 결과로 해석된다.

Keywords

References

  1. Armstrong, R.A., C. Lee, J.I. Hedges, S. Honjo and S.G. Wakeham, 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Research Part II, 49: 219-236. https://doi.org/10.1016/S0967-0645(01)00101-1
  2. Broecker, W.S. and S. Sutherland, 2000. Distribution of carbonate ion in the deep ocean: Support for a post-Little Ice Age change in Southern Ocean ventilation? Geochem. Geophysics Geosystems, 1(1).
  3. Chang, P.-H. and A. Isobe, 2003. A nemerical study on the Changjiang diluted water in the Yellow and East China Seas. J. Geophys. Res., 108(C9): 15-1-17.
  4. Chen, C.-T.A., S.-L. Wang and A.S. Bychkov, 1995. Carbonate chemistry of the Sea of Japan. J. Geophysic. Res., 100(C7): 13737-13745. https://doi.org/10.1029/95JC00939
  5. Chen, C.-T.A., H.-K. Lui, D.-H. Hsieh, T. Yanagi, N. Kosugi, M. Ishii and G.-C. Gong, 2017. Deep oceans may acidify faster than anticipated due to global warming. Nature Climate Change, 7(12): 890-894. https://doi.org/10.1038/s41558-017-0003-y
  6. Dickson, A,G,, C.L. Sabine and J.R. Christian, 2007. Guide to best practices for ocean $CO_2$ measurement. Sidney, British Columbia, North Pacific Marine Science Organization, pp 39-87
  7. Dickson, A.G. and F.J. Millero, 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research Part I, 34: 1733-1743. https://doi.org/10.1016/0198-0149(87)90021-5
  8. Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry and F.J. Millero, 2004. Impact of anthropogenic $CO_2$ on the $CaCO_3$ system in the oceans. Science, 305: 362-366. https://doi.org/10.1126/science.1097329
  9. Gattuso, J.-P., J. Biyma, M. Gehlen, U. Riedbesell and C. Turly, 2011. Ocean acidification: knowns, unknowns, and perspectives. In: Ocean acidification, edited by Gattuso, J.-P. and L. Hansson, Oxford University Press, Oxford, New York, pp 291-311.
  10. Gattuso, J.-P. and L. Hansson, 2011. Ocean acidification: background and history. In: Ocean acidification, edited by Gattuso, J.-P. and L. Hansson, Oxford University Press, Oxford, New York, pp 1-20.
  11. Goodwin, P. and J.M. Lauderdale, 2013. Carbonate ion concentrations, ocean carbon storage, and atmospheric $CO_2$. Global Biogeochemical Cycles, 27: 882-893. https://doi.org/10.1002/gbc.20078
  12. Gruber, N. and J.L. Sarmiento, 2002. Large-scale biogeochemical/physical interactions in elemental cycles. In: The sea: biological-physical interactions in the oceans, edited by Robinson, A.R., J.J. McCarthy and B.J. Rothschild, John Wiley and Sons, Inc., New York, pp 337-399.
  13. Ingle, S.E., 1975. Solubility of calcite in the ocean. Mar. Chem., 3: 301-319. https://doi.org/10.1016/0304-4203(75)90010-9
  14. Kim, M., J. Hwang, T.K. Rho, T. Lee, D.-J. Kang, K.-I. Chang, S. Noh, H.T. Joo, J.H. Kwak, C.-K. Kang and K.-R. Kim, 2017. Biogeochemical properties of sinking particles in the southwestern part of the East Sea (Japan Sea). J. Mar. Sys., 167: 33-42. https://doi.org/10.1016/j.jmarsys.2016.11.001
  15. Kim, J.-Y., D.-J. Kang, T. Lee and K.-R. Kim, 2014. Long-term trend of $CO_2$ and ocean acidification in the surface water of the Ulleung Basin, the East/Japan Sea inferred from the underway observational data. Biogeosciences, 11: 2443-2454. https://doi.org/10.5194/bg-11-2443-2014
  16. Kim, T.-W., K. Lee, R.A. Feely, C.L. Sabine, C.-T.A. Chen, H.J. Jeong, K.Y. Kim, 2010. Prediction of Sea of Japan (East Sea) acidification over the past 40 years using a multiparameter regression model. Global Biogeochemical Cycles, 24: GB30053.
  17. Kwak, J.H., J. Hwang, E.J. Choy, H.J. Park, D.-J. Kang, T. Lee, K.-I. Chang, K.-R. Kim and C.-K. Kang, 2013. High primary productivity and f-ratio in summer in the Ulleung Basin of East/Japan Sea. Deep-Sea Research Part I, 79: 74-85. https://doi.org/10.1016/j.dsr.2013.05.011
  18. Le Quere, C., R.M. Andrew, P. Friedlingstein, S. Sitch, J. Hauck, J. Pongratz, P.A. Pickers, J.I. Korsbakken, G.P. Peters, J.G. Canadell, A. Arneth, V.K. Arora, L. Barbero, A. Bastos, L. Bopp, F. Chevallier, L.P. Chini, P. Ciais, S.C. Doney, T. Gkritzalis, D.S. Goll, I. Harris, V. Haverd, F.M. Hoffman, M. Hoppema, R.A. Houghton, G. Hurtt, T. Ilyina, A.K. Jain, T. Johannessen, C.D. Jones, E. Kato, R.F. Keeling, K.K. Goldewijk, P. Landschützer, N. Lefevre, S. Lienert, Z. Liu, D. Lombardozzi, N. Metzl, D.R. Munro, M.S. Nabel, S.I. Nakaoka, C. Neill, A. Olsen, T. Ono, P. Patra, A. Peregon, W. Peters, P. Peylin, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, M. Rocher, C. Rödenbeck, U. Schuster, J. Schwinger, R. Seferian, I. Skjelvan, T. Steinhoff, A. Sutton, P.P. Tans, H. Tian, B. Tilbrook, F.N. Tubiello, I.T. van der Laan-Luijkx, G.R. van der Werf, N. Viovy, A.P. Walker, A.J. Wiltshire, R. Wright, S. Zaehle and B. Zheng, 2018. Global Carbon Budget 2018. Earth Syst. Sci. Data, 10: 2141-2194, https://doi.org/10.5194/essd-10-2141-2018.
  19. Lewis, E. and D. Wallace, 1998. Program developed for $CO_2$ system calculations. Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.
  20. Mehrbach, C., C.H. Cullberson, J.E. Hawley and R.M. Pytkowicz, 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr., 18(6): 897-907. https://doi.org/10.4319/lo.1973.18.6.0897
  21. Millero, F.J., 1979. The thermodynamics of the carbonate system in seawater. Geochem. Cosmochim. Acta, 43: 1651-1661. https://doi.org/10.1016/0016-7037(79)90184-4
  22. Millero, F.J., 1995. Thermodynamics of the carbon dioxide system in the oceans. Geochem. Cosmochim. Acta, 59: 661-677. https://doi.org/10.1016/0016-7037(94)00354-O
  23. Mussi, A., 1983. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. American Journal of Science, 283: 781-799.
  24. Olafsson, J., S.R. Olafsdottir, A. Benoit-Cattin, M. Danielsen, T.S. Arnarson and T. Takahashi, 2009. Rate of Iceland Sea acidification from time series measurements. Biogeosciences, 6: 2661-2668. https://doi.org/10.5194/bg-6-2661-2009
  25. Orr, J.C., 2011. Ocean acidification: Recent and future changes in ocean carbonate chemistry. In: Ocean acidification, edited by Gattuso, J.-P. and L. Hansson, Oxford University Press, Oxford, New York, pp 41-66.
  26. Orr, J.C., J.-M. Epitalon, A.G. Dickson, J.-P. Gattuso, 2018. Routine uncertainty propagation for the marine carbon dioxide system. Mar. Chem., 207: 84-107, doi:10.1016/j.marchem.2018.10.006.
  27. Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R.M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R.G. Najjar, G.-K. Plattner, K.B. Rodgers, C.L. Sabine, J.L. Sarmiento, R. Schlitzer, R.D. Slater, I.J. Totterdell, M.-F. Weirig, Y. Yamanaka and A. Yool, 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437: 681-686. https://doi.org/10.1038/nature04095
  28. Park, G.-H., K. Lee, P. Tishchenko, D.-H. Min, M.J. Warner, L.D. Talley, D.-J. Kang and K.-R. Kim, 2006. Large accumulation of anthropogenic $CO_2$ in the East (Japan) Sea and its significant impact on carbonate chemistry. Global Biogeochemical Cycles, 20: GB4013. https://doi.org/10.1029/2005GB002676
  29. Steinacher, M., F. Joos, T.L. Frolicher, G.-K. Plattner and S.C. Doney, 2009. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences, 6: 515-533. https://doi.org/10.5194/bg-6-515-2009
  30. Tishchenko, P.Y., G.Y. Pavlova and E.M. Shkirnikova, 2012. A new look at the alkalinity of the Sea of Japan. Oceanography, 52(1): 21-33.
  31. Tsunogai, S., Y.W. Watanabe, K. Harada, S. Watanabe, S. Saito and M. Nakajima, 1993. Dynamics of the Japan Sea deep water studied with chemical and radiochemical tracers. In: Deep ocean circulation, physical and chemical aspects, edited by Teramoto T., Elsevier, Amsterdam, pp 105-119.
  32. Watanabe, Y.W., S. Watanabe and S. Tsunogai, 1991. Tritium in the Japan Sea and the renewal time of the Japan Sea deep water. Marine Chemistry, 34: 97-108. https://doi.org/10.1016/0304-4203(91)90016-P
  33. Yoon S.-T., K.-I. Chang, S.H. Nam, T.K. Rho, D.-J. Kang, T. Lee, K.-A. Park, V. Lobanov, D. Kaplunenko, P. Tishchenko and K.-R. Kim, 2018. Re-initiation of bottom water formation in the East Sea (Japan Sea) in a warming world. Scientific Rep., 8: 1-10. https://doi.org/10.1038/s41598-017-17765-5