Browse > Article
http://dx.doi.org/10.7850/jkso.2019.24.3.389

Calcium Carbonate Saturation State in the Ulleung Basin, East Sea  

KIM, SO-YUN (Department of Oceanography, Pusan National University)
JEONG, SEONGHEE (Department of Oceanography, Pusan National University)
LEE, TONGSUP (Department of Oceanography, Pusan National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.24, no.3, 2019 , pp. 389-399 More about this Journal
Abstract
The calcium carbonate saturation state in the Ulleung Basin of East Sea was calculated using bottle data set of pH, dissolved inorganic carbon and total alkalinity obtained from the year 1999, 2014, 2017, and 2018 cruise. In the 2010s calcium carbonate saturation state was significantly lowered at all depth compared to the 1999 reference state. Accordingly calcite saturation horizon and aragonite saturation horizon shoaled to 500 m and 200 m, respectively. A key chemical species for the calcium carbonate saturation state, carbonate ion showed distinctive profile between upper and deep waters: it is moderately high (${\sim}175{\mu}mol\;kg^{-1}$) in upper waters and very low (< ${\sim}50{\mu}mol\;kg^{-1}$) in the deep waters. However the decreasing trend of carbonate ion concentration was pronounced in the upper water than deep waters, suggesting atmospheric $CO_2$ penetration is largely confined to the upper waters in the 2000s.
Keywords
Calcium carbonate saturation state; Aragonite saturation horizon; Calcite saturation horizon; Carbonate ion; Ulleung Basin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Olafsson, J., S.R. Olafsdottir, A. Benoit-Cattin, M. Danielsen, T.S. Arnarson and T. Takahashi, 2009. Rate of Iceland Sea acidification from time series measurements. Biogeosciences, 6: 2661-2668.   DOI
2 Orr, J.C., 2011. Ocean acidification: Recent and future changes in ocean carbonate chemistry. In: Ocean acidification, edited by Gattuso, J.-P. and L. Hansson, Oxford University Press, Oxford, New York, pp 41-66.
3 Orr, J.C., J.-M. Epitalon, A.G. Dickson, J.-P. Gattuso, 2018. Routine uncertainty propagation for the marine carbon dioxide system. Mar. Chem., 207: 84-107, doi:10.1016/j.marchem.2018.10.006.   DOI
4 Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R.M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R.G. Najjar, G.-K. Plattner, K.B. Rodgers, C.L. Sabine, J.L. Sarmiento, R. Schlitzer, R.D. Slater, I.J. Totterdell, M.-F. Weirig, Y. Yamanaka and A. Yool, 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437: 681-686.   DOI
5 Park, G.-H., K. Lee, P. Tishchenko, D.-H. Min, M.J. Warner, L.D. Talley, D.-J. Kang and K.-R. Kim, 2006. Large accumulation of anthropogenic $CO_2$ in the East (Japan) Sea and its significant impact on carbonate chemistry. Global Biogeochemical Cycles, 20: GB4013.   DOI
6 Steinacher, M., F. Joos, T.L. Frolicher, G.-K. Plattner and S.C. Doney, 2009. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences, 6: 515-533.   DOI
7 Tishchenko, P.Y., G.Y. Pavlova and E.M. Shkirnikova, 2012. A new look at the alkalinity of the Sea of Japan. Oceanography, 52(1): 21-33.
8 Chang, P.-H. and A. Isobe, 2003. A nemerical study on the Changjiang diluted water in the Yellow and East China Seas. J. Geophys. Res., 108(C9): 15-1-17.
9 Armstrong, R.A., C. Lee, J.I. Hedges, S. Honjo and S.G. Wakeham, 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Research Part II, 49: 219-236.   DOI
10 Broecker, W.S. and S. Sutherland, 2000. Distribution of carbonate ion in the deep ocean: Support for a post-Little Ice Age change in Southern Ocean ventilation? Geochem. Geophysics Geosystems, 1(1).
11 Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry and F.J. Millero, 2004. Impact of anthropogenic $CO_2$ on the $CaCO_3$ system in the oceans. Science, 305: 362-366.   DOI
12 Chen, C.-T.A., S.-L. Wang and A.S. Bychkov, 1995. Carbonate chemistry of the Sea of Japan. J. Geophysic. Res., 100(C7): 13737-13745.   DOI
13 Chen, C.-T.A., H.-K. Lui, D.-H. Hsieh, T. Yanagi, N. Kosugi, M. Ishii and G.-C. Gong, 2017. Deep oceans may acidify faster than anticipated due to global warming. Nature Climate Change, 7(12): 890-894.   DOI
14 Kim, J.-Y., D.-J. Kang, T. Lee and K.-R. Kim, 2014. Long-term trend of $CO_2$ and ocean acidification in the surface water of the Ulleung Basin, the East/Japan Sea inferred from the underway observational data. Biogeosciences, 11: 2443-2454.   DOI
15 Kim, T.-W., K. Lee, R.A. Feely, C.L. Sabine, C.-T.A. Chen, H.J. Jeong, K.Y. Kim, 2010. Prediction of Sea of Japan (East Sea) acidification over the past 40 years using a multiparameter regression model. Global Biogeochemical Cycles, 24: GB30053.
16 Kwak, J.H., J. Hwang, E.J. Choy, H.J. Park, D.-J. Kang, T. Lee, K.-I. Chang, K.-R. Kim and C.-K. Kang, 2013. High primary productivity and f-ratio in summer in the Ulleung Basin of East/Japan Sea. Deep-Sea Research Part I, 79: 74-85.   DOI
17 Dickson, A,G,, C.L. Sabine and J.R. Christian, 2007. Guide to best practices for ocean $CO_2$ measurement. Sidney, British Columbia, North Pacific Marine Science Organization, pp 39-87
18 Dickson, A.G. and F.J. Millero, 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research Part I, 34: 1733-1743.   DOI
19 Gattuso, J.-P., J. Biyma, M. Gehlen, U. Riedbesell and C. Turly, 2011. Ocean acidification: knowns, unknowns, and perspectives. In: Ocean acidification, edited by Gattuso, J.-P. and L. Hansson, Oxford University Press, Oxford, New York, pp 291-311.
20 Gattuso, J.-P. and L. Hansson, 2011. Ocean acidification: background and history. In: Ocean acidification, edited by Gattuso, J.-P. and L. Hansson, Oxford University Press, Oxford, New York, pp 1-20.
21 Ingle, S.E., 1975. Solubility of calcite in the ocean. Mar. Chem., 3: 301-319.   DOI
22 Le Quere, C., R.M. Andrew, P. Friedlingstein, S. Sitch, J. Hauck, J. Pongratz, P.A. Pickers, J.I. Korsbakken, G.P. Peters, J.G. Canadell, A. Arneth, V.K. Arora, L. Barbero, A. Bastos, L. Bopp, F. Chevallier, L.P. Chini, P. Ciais, S.C. Doney, T. Gkritzalis, D.S. Goll, I. Harris, V. Haverd, F.M. Hoffman, M. Hoppema, R.A. Houghton, G. Hurtt, T. Ilyina, A.K. Jain, T. Johannessen, C.D. Jones, E. Kato, R.F. Keeling, K.K. Goldewijk, P. Landschützer, N. Lefevre, S. Lienert, Z. Liu, D. Lombardozzi, N. Metzl, D.R. Munro, M.S. Nabel, S.I. Nakaoka, C. Neill, A. Olsen, T. Ono, P. Patra, A. Peregon, W. Peters, P. Peylin, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, M. Rocher, C. Rödenbeck, U. Schuster, J. Schwinger, R. Seferian, I. Skjelvan, T. Steinhoff, A. Sutton, P.P. Tans, H. Tian, B. Tilbrook, F.N. Tubiello, I.T. van der Laan-Luijkx, G.R. van der Werf, N. Viovy, A.P. Walker, A.J. Wiltshire, R. Wright, S. Zaehle and B. Zheng, 2018. Global Carbon Budget 2018. Earth Syst. Sci. Data, 10: 2141-2194, https://doi.org/10.5194/essd-10-2141-2018.   DOI
23 Lewis, E. and D. Wallace, 1998. Program developed for $CO_2$ system calculations. Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.
24 Tsunogai, S., Y.W. Watanabe, K. Harada, S. Watanabe, S. Saito and M. Nakajima, 1993. Dynamics of the Japan Sea deep water studied with chemical and radiochemical tracers. In: Deep ocean circulation, physical and chemical aspects, edited by Teramoto T., Elsevier, Amsterdam, pp 105-119.
25 Watanabe, Y.W., S. Watanabe and S. Tsunogai, 1991. Tritium in the Japan Sea and the renewal time of the Japan Sea deep water. Marine Chemistry, 34: 97-108.   DOI
26 Yoon S.-T., K.-I. Chang, S.H. Nam, T.K. Rho, D.-J. Kang, T. Lee, K.-A. Park, V. Lobanov, D. Kaplunenko, P. Tishchenko and K.-R. Kim, 2018. Re-initiation of bottom water formation in the East Sea (Japan Sea) in a warming world. Scientific Rep., 8: 1-10.   DOI
27 Goodwin, P. and J.M. Lauderdale, 2013. Carbonate ion concentrations, ocean carbon storage, and atmospheric $CO_2$. Global Biogeochemical Cycles, 27: 882-893.   DOI
28 Gruber, N. and J.L. Sarmiento, 2002. Large-scale biogeochemical/physical interactions in elemental cycles. In: The sea: biological-physical interactions in the oceans, edited by Robinson, A.R., J.J. McCarthy and B.J. Rothschild, John Wiley and Sons, Inc., New York, pp 337-399.
29 Kim, M., J. Hwang, T.K. Rho, T. Lee, D.-J. Kang, K.-I. Chang, S. Noh, H.T. Joo, J.H. Kwak, C.-K. Kang and K.-R. Kim, 2017. Biogeochemical properties of sinking particles in the southwestern part of the East Sea (Japan Sea). J. Mar. Sys., 167: 33-42.   DOI
30 Mehrbach, C., C.H. Cullberson, J.E. Hawley and R.M. Pytkowicz, 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr., 18(6): 897-907.   DOI
31 Millero, F.J., 1979. The thermodynamics of the carbonate system in seawater. Geochem. Cosmochim. Acta, 43: 1651-1661.   DOI
32 Millero, F.J., 1995. Thermodynamics of the carbon dioxide system in the oceans. Geochem. Cosmochim. Acta, 59: 661-677.   DOI
33 Mussi, A., 1983. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. American Journal of Science, 283: 781-799.