DOI QR코드

DOI QR Code

일 유량 자료의 카오스 특성 및 예측

Analysis of Chaos Characterization and Forecasting of Daily Streamflow

  • Wang, W.J. (Disaster Research Team, Disaster Management Research Center) ;
  • Yoo, Y.H. (Department of Civil Engineering, Inha university) ;
  • Lee, M.J. (Department of Civil Engineering, Inha university) ;
  • Bae, Y.H. (Department of Civil Engineering, Inha university) ;
  • Kim, H.S. (Department of Civil Engineering, Inha university)
  • 투고 : 2019.07.25
  • 심사 : 2019.07.29
  • 발행 : 2019.08.30

초록

현재까지 많은 수문 시계열은 전통적인 선형 모형을 이용하여 분석되고 예측되어 왔다. 하지만, 자연현상과 수문시계열의 패턴 및 변동과 관련하여 비선형적 구조의 증거가 발견되고 있다. 따라서 시계열 분석 및 예측을 위한 기존의 선형 모형은 비선형적 특성에 적합하지 않을 수 있다. 본 연구에서는 미국 플로리다 코코아 지역 인근에 있는 St.Johns 강의 일유량 자료에 대한 카오스 분석을 수행하였고, 그 결과 낮은 차원의 비선형 동역학적 특성을 가진 흥미로운 결과가 나타났지만 한국의 소양강댐 일유량 자료는 확률적 특성을 보여주었다. 카오스 특성을 토대로한 DVS(결정론적 vs 추계학적) 알고리즘을 이용해 두 시계열 시스템의 특성을 파악하였고 단기 예측을 수행하였다. 또한 본 연구에서는 일 유량 시계열 예측을 위해 인공신경망 방법을 사용하였고, DVS 알고리즘에 의한 예측을 비교 분석하였다. 분석 결과, 카오스 특성을 갖는 시계열 자료가 보다 정확한 예측성을 보였다.

Hydrologic time series has been analyzed and forecasted by using classical linear models. However, there is growing evidence of nonlinear structure in natural phenomena and hydrologic time series associated with their patterns and fluctuations. Therefore, the classical linear techniques for time series analysis and forecasting may not be appropriate for nonlinear processes. Daily streamflow series at St. Johns river near Cocoa, Florida, USA showed an interesting result of a low dimensional, nonlinear dynamical system but daily inflow at Soyang reservoir, South Korea showed stochastic property. Based on the chaotic dynamical characteristic, DVS (deterministic versus stochastic) algorithm is used for short-term forecasting, as well as for exploring the properties of the system. In addition to the use of DVS algorithm, a neural network scheme for the forecasting of the daily streamflow series can be used and the two techniques are compared in this study. As a result, the daily streamflow which has chaotic property showed much more accurate result in short term forecasting than stochastic data.

키워드

참고문헌

  1. Barnett, K. D. (1993). On the estimation of the correlation dimension and its application to radar reflector discrimination.
  2. Casdagli, M. (1992). Chaos and deterministic versus stochastic non-linear modelling. Journal of the Royal Statistical Society: Series B (Methodological), 54(2), 303-328. https://doi.org/10.1111/j.2517-6161.1992.tb01884.x
  3. Chan, K. S. and Tong, H. 2001, Chaos: A Statistical Perspective. New York, Springer.
  4. Damle, C., & Yalcin, A. (2007). Flood prediction using time series data mining. Journal of Hydrology, 333(2-4), 305-316. https://doi.org/10.1016/j.jhydrol.2006.09.001
  5. Edossa, D. C., & Babel, M. S. (2011). Application of ANN-based streamflow forecasting model for agricultural water management in the Awash River Basin, Ethiopia. Water resources management, 25(6), 1759-1773. https://doi.org/10.1007/s11269-010-9773-y
  6. Farmer, J. D., & Sidorowich, J. J. (1987). Predicting chaotic time series. Physical review letters, 59(8), 845-848. https://doi.org/10.1103/PhysRevLett.59.845
  7. Ghorbani, M. A., Khatibi, R., Mehr, A. D., & Asadi, H. (2018). Chaos-based multigene genetic programming: A new hybrid strategy for river flow forecasting. Journal of hydrology, 562, 455-467. https://doi.org/10.1016/j.jhydrol.2018.04.054
  8. Graf, K. E., & Elbert, T. (1989). Dimensional analysis of the waking EEG. In Brain dynamics (pp. 174-191). Springer, Berlin, Heidelberg.
  9. Grassberger, P., & Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena, 9(1-2), 189-208. https://doi.org/10.1016/0167-2789(83)90298-1
  10. Holzfuss, J., & Mayer-Kress, G. (1986). An approach to error-estimation in the application of dimension algorithms. In Dimensions and entropies in chaotic systems (pp. 114-122). Springer, Berlin, Heidelberg.
  11. Kim, H., Eykholt, R., & Salas, J. D. (1999). Nonlinear dynamics, delay times, and embedding windows. Physica D: Nonlinear Phenomena, 127(1-2), 48-60. https://doi.org/10.1016/S0167-2789(98)00240-1
  12. Kim, S., Kim, Y., Lee, J., & Kim, H. S. (2015). Identifying and Evaluating Chaotic Behavior in Hydro-Meteorological Processes. Advances in Meteorology, 2015.
  13. Kisi, O., & Cimen, M. (2011). A wavelet-support vector machine conjunction model for monthly streamflow forecasting. Journal of Hydrology, 399(1-2), 132-140. https://doi.org/10.1016/j.jhydrol.2010.12.041
  14. Kyoung, M. S., Kim, H. S., Sivakumar, B., Singh, V. P., & Ahn, K. S. (2011). Dynamic characteristics of monthly rainfall in the Korean Peninsula under climate change. Stochastic Environmental Research and Risk Assessment, 25(4), 613-625. https://doi.org/10.1007/s00477-010-0425-9
  15. Lall, U., Sangoyomi, T., & Abarbanel, H. D. (1996). Nonlinear dynamics of the Great Salt Lake: Nonparametric short-term forecasting. Water Resources Research, 32(4), 975-985. https://doi.org/10.1029/95WR03402
  16. Liang, Z., Xiao, Z., Wang, J., Sun, L., Li, B., Hu, Y., & Wu, Y. (2019). An Improved Chaos Similarity Model for Hydrological Forecasting. Journal of Hydrology, 123953.
  17. Packard, N. H., Crutchfield, J. P., Farmer, J. D., & Shaw, R. S. (1980). Geometry from a time series. Physical review letters, 45(9), 712. https://doi.org/10.1103/PhysRevLett.45.712
  18. Phoon, K. K., Islam, M. N., Liaw, C. Y., & Liong, S. Y. (2002). Practical inverse approach for forecasting nonlinear hydrological time series. Journal of Hydrologic Engineering, 7(2), 116-128. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:2(116)
  19. Porporato, A., & Ridolfi, L. (1997). Nonlinear analysis of river flow time sequences. Water Resources Research, 33(6), 1353-1367. https://doi.org/10.1029/96WR03535
  20. Puente, C. E., & Obregon, N. (1996). A deterministic geometric representation of temporal rainfall: results for a storm in Boston. Water resources research, 32(9), 2825-2839. https://doi.org/10.1029/96WR01466
  21. Rodriguez-Iturbe, I., Febres De Power, B., Sharifi, M. B., & Georgakakos, K. P. (1989). Chaos in rainfall. Water Resources Research, 25(7), 1667-1675. https://doi.org/10.1029/WR025i007p01667
  22. Salas, J. D., Kim, H. S., Eykholt, R., Burlando, P., & Green, T. R. (2005). Aggregation and sampling in deterministic chaos: implications for chaos identification in hydrological processes. Nonlinear processes in geophysics, 12(4), 557-567. https://doi.org/10.5194/npg-12-557-2005
  23. Sangoyomi, T. B., Lall, U., & Abarbanel, H. D. (1996). Nonlinear dynamics of the Great Salt Lake: dimension estimation. Water resources research, 32(1), 149-159. https://doi.org/10.1029/95WR02872
  24. Sharifi, M. B., Georgakakos, K. P., & Rodriguez-Iturbe, I. (1990). Evidence of deterministic chaos in the pulse of storm rainfall. Journal of the Atmospheric Sciences, 47(7), 888-893. https://doi.org/10.1175/1520-0469(1990)047<0888:EODCIT>2.0.CO;2
  25. Sivakumar, B., Berndtsson, R., & Persson, M. (2001). Monthly runoff prediction using phase space reconstruction. Hydrological sciences journal, 46(3), 377-387. https://doi.org/10.1080/02626660109492833
  26. Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical systems and turbulence, Warwick 1980 (pp. 366-381). Springer, Berlin, Heidelberg.
  27. Tsonis, A. A., & Elsner, J. B. (1988). The weather attractor over very short timescales. Nature, 333(6173), 545. https://doi.org/10.1038/333545a0
  28. Zhang, L., Xia, J., Song, X., Cheng, X., (2009). Similarity model of chaos phase space and its application in midand long-term hydrologic prediction. Kybernetes, 38 (10), 1835-1842. https://doi.org/10.1108/03684920910994367