References
- R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002). https://doi.org/10.1021/ie0108088
- N. W. Ockwig and T. M. Nenoff, "Membranes for hydrogen separation", Chem. Rev., 107, 4078 (2007). https://doi.org/10.1021/cr0501792
- P. Bernardo, E. Drioli, and G. Golemme, "Membrane gas separation: A review/state of the art", Ind. Eng. Chem. Res., 48, 4638 (2009). https://doi.org/10.1021/ie8019032
-
W. S. Chi, J. H. Lee, M. S. Park, and J. H. Kim, "Recent research trends of mixed matrix membranes for
$CO_2$ separation Won Seok", Membr. J., 25, 373 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.373 - S. Kwon and J. Rhim, "Facilitated transport separation of carbon dioxide using aminated polyetherimide membranes", Membr. J., 25, 248 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.248
-
P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, and L. Wojtas, "Porous materials with optimal adsorption thermodynamics and kinetics for
$CO_2$ separation", Nature, 495, 80 (2013). https://doi.org/10.1038/nature11893 - D. M. D'Alessandro, B. Smit, and J. R. Long, "Carbon dioxide capture: Prospects for new materials", Angew. Chem. Int. Ed., 49, 6058 (2010). https://doi.org/10.1002/anie.201000431
- C. Park, J. Lee, M. Park, and J. Kim, "Facilitated transport: Basic concepts and applications to gas separation membranes", Membr. J., 27, 205 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.205
-
H. Lin and M. Yavari, "Upper bound of polymeric membranes for mixed-gas
$CO_2/CH_4$ separations", J. Membr. Sci., 475, 101 (2015). https://doi.org/10.1016/j.memsci.2014.10.007 - L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
-
C. Park, J. Jung, J. Lee, and J. Kim, "Enhancement of
$CO_2$ permeance by incorporating$CaCO_3$ in mixed matrix membranes", Membr. J., 28, 55 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.55 -
P. Guan, J. Luo, W. Li, and Z. Si, "Enhancement of gas permeability for
$CH_4/N_2$ separation membranes by blending SBS to Pebax polymers", Macromol. Res., 25, 1007 (2017). https://doi.org/10.1007/s13233-017-5130-9 -
Y. Choi and S. W. Kang, "Effect of 4-hydroxybenzoic acid on
$CO_2$ separation performance of poly(ethylene oxide) membrane", Macromol. Res., 24, 1111 (2016). https://doi.org/10.1007/s13233-016-4154-x - W. S. Chi, S. U. Hong, B. Jung, S. W. Kang, Y. S. Kang, and J. H. Kim, "Synthesis, structure and gas permeation of polymerized ionic liquid graft copolymer membranes", J. Membr. Sci., 443, 54 (2013). https://doi.org/10.1016/j.memsci.2013.04.049
-
C. H. Park, J. H. Lee, J. P. Jung, B. Jung, and J. H. Kim, "A highly selective PEGBEM-g-POEM comb copolymer membrane for
$CO_2/N_2$ separation", J. Membr. Sci., 492, 452 (2015). https://doi.org/10.1016/j.memsci.2015.06.023 - S. H. Ahn, J. A. Seo, J. H. Kim, Y. Ko, and S. U. Hong, "Synthesis and gas permeation properties of amphiphilic graft copolymer membranes", J. Membr. Sci., 345, 128 (2009). https://doi.org/10.1016/j.memsci.2009.08.037
-
J. H. Lee, J. P. Jung, E. Jang, K. B. Lee, Y. S. Kang, and J. H. Kim, "
$CO_2$ -philic PBEM-g-POEM comb copolymer membranes: Synthesis, characterization and$CO_2/N_2$ separation", J. Membr. Sci., 502, 191 (2016). https://doi.org/10.1016/j.memsci.2015.12.005 -
A. Ghadimi, R. Gharibi, H. Yeganeh, and B. Sadatnia, "Ionic liquid tethered PEG-based polyurethane-siloxane membranes for efficient
$CO_2/CH_4$ separation", Materials Science and Engineering: C, 102, 524 (2019). https://doi.org/10.1016/j.msec.2019.04.057 -
H. Lin and B. D. Freeman, "Materials selection guidelines for membranes that remove
$CO_2$ from gas mixtures", J. Mol. Struct., 739, 57 (2005). https://doi.org/10.1016/j.molstruc.2004.07.045 - B. D. Freeman, "Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes", Macromolecules, 32, 375 (1999). https://doi.org/10.1021/ma9814548
-
P. Li, H. Z. Chen, and T.-S. Chung, "The effects of substrate characteristics and pre-wetting agents on PAN-PDMS composite hollow fiber membranes for
$CO_2/N_2$ and$O_2/N_2$ separation", J. Membr. Sci., 434, 18 (2013). https://doi.org/10.1016/j.memsci.2013.01.042 -
T. Hu, G. Dong, H. Li, and V. Chen, "Improved
$CO_2$ separation performance with additives of PEG and PEG-PDMS copolymer in poly (2,6-dimethyl-1,4-phenylene oxide) membranes", J. Membr. Sci., 432, 13 (2013). https://doi.org/10.1016/j.memsci.2012.12.034 - G. Kapantaidakis and G. Koops, "High flux polyethersulfone-polyimide blend hollow fiber membranes for gas separation", J. Membr. Sci., 204, 153 (2002). https://doi.org/10.1016/S0376-7388(02)00030-3
-
Y. Wang, T. Hu, H. Li, G. Dong, W. Wong, and V. Chen, "Enhancing membrane permeability for
$CO_2$ capture through blending commodity polymers with selected PEO and PEO-PDMS copolymers and composite hollow fibres", Energy Procedia, 63, 202 (2014). https://doi.org/10.1016/j.egypro.2014.11.021 - L. Liu, A. Chakma, and X. Feng, "Preparation of hollow fiber poly (ether block amide)/polysulfone composite membranes for separation of carbon dioxide from nitrogen", Chem. Eng. J., 105, 43 (2004). https://doi.org/10.1016/j.cej.2004.08.005
- A. Zulhairun, Z. Fachrurrazi, M. N. Izwanne, and A. Ismail, "Asymmetric hollow fiber membrane coated with polydimethylsiloxane-metal organic framework hybrid layer for gas separation", Sep. Purif. Technol., 146, 85 (2015). https://doi.org/10.1016/j.seppur.2015.03.033
-
F. Nie, G. He, W. Zhao, J. Ju, Y. Liu, and Y. Dai, "Improving
$CO_2$ separation performance of the polyethylene glycol (PEG)/polytrifluoropropylsiloxane (PTFPMS) blend composite membrane", J. Polym. Res., 21, 319 (2014). https://doi.org/10.1007/s10965-013-0319-x