DOI QR코드

DOI QR Code

Fabrication of Polymeric Blend Membranes Using PBEM-POEM Comb Copolymer and Poly(ethylene glycol) for CO2 Capture

PBEM-POEM 공중합체와 Poly(ethylene glycol)의 폴리머 블렌드를 이용한 이산화탄소 분리막 제조

  • Moon, Seung Jae (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Min, Hyo Jun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Na Un (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 문승재 (연세대학교 화공생명공학과) ;
  • 민효준 (연세대학교 화공생명공학과) ;
  • 김나운 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2019.08.22
  • Accepted : 2019.08.28
  • Published : 2019.08.31

Abstract

In this paper, we develop a polymeric blend membrane based on $CO_2$-philic poly(2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate)-poly(oxyethylene methacrylate) (PBEM-POEM) comb copolymer, which was synthesized by facile free radical polymerization. The PBEM-POEM (PBE) comb copolymer was blended with a commercial oligomer, low-molecular-weight poly(ethylene glycol) (PEG, $M_w=200gmol^{-1}$) with various ratios to prepare $CO_2/N_2$ separation membranes. From the result of $CO_2/N_2$ separation test of the PBE/PEG blend membranes with the various PEG contents, we could conclude that with increasing PEG content, the $CO_2/N_2$ selectivity significantly increased while the CO2 permeability decreased showing trade-off relationship. However, when comparing the performance of the PBE/PEG (9 : 1) with the PBE/PEG (7 : 3) membrane, the $CO_2$ permeance decreased by only 8.3%, while the $N_2$ permeance decreased by 69.1%. Therefore, the $CO_2/N_2$ selectivity dramatically increased from 33.8 to 100.3. This could be because the POEM chains, which account for 80% of the PBE copolymer, favorably interact with PEG and lead to a more compact chain structure, which was confirmed by FT-IR, XRD and SEM analysis. The PBE/PEG (7 : 3) blend membrane had the most optimal gas separation performance, showing a $CO_2$ permeance of 170.5 GPU and $CO_2/N_2$ selectivity of 100.3.

본 논문에서는 이산화탄소 친화적인 PBEM-POEM (PBE) 공중합체를 기반으로 고분자 블렌드 분리막을 제조하는 방법을 제시한다. PBE 공중합체는 자유 라디칼 중합 반응을 통해 손쉽게 합성이 가능하며, 이를 상용 고분자인 PEG와 다양한 비율로 혼합하여 이산화탄소/질소 분리막을 제조하였다. 이산화탄소/질소 분리 성능을 테스트한 결과, PEG의 함량이 높을수록 이산화탄소 투과도는 감소하는 반면 이산화탄소/질소 선택도는 크게 증가하는 상충(trade-off) 관계가 나타났다. 그러나 PBE/PEG (9 : 1)과 PBE/PEG (7 : 3)을 비교하면 이산화탄소 투과도는 단지 8.3% 감소한 반면에 질소 투과도는 69.1%나 감소하였다. 따라서 이산화탄소/질소 선택도가 33.8에서 100.3으로 크게 증가하였다. 이것은 PBE 공중합체의 80%를 차지하는 POEM 사슬이 PEG와 상호작용하여 더욱 조밀한 구조가 되었기 때문이며, 이를 FT-IR, XRD, SEM 분석으로 확인하였다. PBE/PEG (7 : 3) 블렌드 막이 가장 최적의 기체 분리 성능을 가졌고, 이산화탄소투과도는 170.5 GPU, 이산화탄소/질소 선택도는 100.3이었다.

Keywords

References

  1. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002). https://doi.org/10.1021/ie0108088
  2. N. W. Ockwig and T. M. Nenoff, "Membranes for hydrogen separation", Chem. Rev., 107, 4078 (2007). https://doi.org/10.1021/cr0501792
  3. P. Bernardo, E. Drioli, and G. Golemme, "Membrane gas separation: A review/state of the art", Ind. Eng. Chem. Res., 48, 4638 (2009). https://doi.org/10.1021/ie8019032
  4. W. S. Chi, J. H. Lee, M. S. Park, and J. H. Kim, "Recent research trends of mixed matrix membranes for $CO_2$ separation Won Seok", Membr. J., 25, 373 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.373
  5. S. Kwon and J. Rhim, "Facilitated transport separation of carbon dioxide using aminated polyetherimide membranes", Membr. J., 25, 248 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.248
  6. P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, and L. Wojtas, "Porous materials with optimal adsorption thermodynamics and kinetics for $CO_2$ separation", Nature, 495, 80 (2013). https://doi.org/10.1038/nature11893
  7. D. M. D'Alessandro, B. Smit, and J. R. Long, "Carbon dioxide capture: Prospects for new materials", Angew. Chem. Int. Ed., 49, 6058 (2010). https://doi.org/10.1002/anie.201000431
  8. C. Park, J. Lee, M. Park, and J. Kim, "Facilitated transport: Basic concepts and applications to gas separation membranes", Membr. J., 27, 205 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.205
  9. H. Lin and M. Yavari, "Upper bound of polymeric membranes for mixed-gas $CO_2/CH_4$ separations", J. Membr. Sci., 475, 101 (2015). https://doi.org/10.1016/j.memsci.2014.10.007
  10. L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  11. C. Park, J. Jung, J. Lee, and J. Kim, "Enhancement of $CO_2$ permeance by incorporating $CaCO_3$ in mixed matrix membranes", Membr. J., 28, 55 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.55
  12. P. Guan, J. Luo, W. Li, and Z. Si, "Enhancement of gas permeability for $CH_4/N_2$ separation membranes by blending SBS to Pebax polymers", Macromol. Res., 25, 1007 (2017). https://doi.org/10.1007/s13233-017-5130-9
  13. Y. Choi and S. W. Kang, "Effect of 4-hydroxybenzoic acid on $CO_2$ separation performance of poly(ethylene oxide) membrane", Macromol. Res., 24, 1111 (2016). https://doi.org/10.1007/s13233-016-4154-x
  14. W. S. Chi, S. U. Hong, B. Jung, S. W. Kang, Y. S. Kang, and J. H. Kim, "Synthesis, structure and gas permeation of polymerized ionic liquid graft copolymer membranes", J. Membr. Sci., 443, 54 (2013). https://doi.org/10.1016/j.memsci.2013.04.049
  15. C. H. Park, J. H. Lee, J. P. Jung, B. Jung, and J. H. Kim, "A highly selective PEGBEM-g-POEM comb copolymer membrane for $CO_2/N_2$ separation", J. Membr. Sci., 492, 452 (2015). https://doi.org/10.1016/j.memsci.2015.06.023
  16. S. H. Ahn, J. A. Seo, J. H. Kim, Y. Ko, and S. U. Hong, "Synthesis and gas permeation properties of amphiphilic graft copolymer membranes", J. Membr. Sci., 345, 128 (2009). https://doi.org/10.1016/j.memsci.2009.08.037
  17. J. H. Lee, J. P. Jung, E. Jang, K. B. Lee, Y. S. Kang, and J. H. Kim, "$CO_2$-philic PBEM-g-POEM comb copolymer membranes: Synthesis, characterization and $CO_2/N_2$ separation", J. Membr. Sci., 502, 191 (2016). https://doi.org/10.1016/j.memsci.2015.12.005
  18. A. Ghadimi, R. Gharibi, H. Yeganeh, and B. Sadatnia, "Ionic liquid tethered PEG-based polyurethane-siloxane membranes for efficient $CO_2/CH_4$ separation", Materials Science and Engineering: C, 102, 524 (2019). https://doi.org/10.1016/j.msec.2019.04.057
  19. H. Lin and B. D. Freeman, "Materials selection guidelines for membranes that remove $CO_2$ from gas mixtures", J. Mol. Struct., 739, 57 (2005). https://doi.org/10.1016/j.molstruc.2004.07.045
  20. B. D. Freeman, "Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes", Macromolecules, 32, 375 (1999). https://doi.org/10.1021/ma9814548
  21. P. Li, H. Z. Chen, and T.-S. Chung, "The effects of substrate characteristics and pre-wetting agents on PAN-PDMS composite hollow fiber membranes for $CO_2/N_2$ and $O_2/N_2$ separation", J. Membr. Sci., 434, 18 (2013). https://doi.org/10.1016/j.memsci.2013.01.042
  22. T. Hu, G. Dong, H. Li, and V. Chen, "Improved $CO_2$ separation performance with additives of PEG and PEG-PDMS copolymer in poly (2,6-dimethyl-1,4-phenylene oxide) membranes", J. Membr. Sci., 432, 13 (2013). https://doi.org/10.1016/j.memsci.2012.12.034
  23. G. Kapantaidakis and G. Koops, "High flux polyethersulfone-polyimide blend hollow fiber membranes for gas separation", J. Membr. Sci., 204, 153 (2002). https://doi.org/10.1016/S0376-7388(02)00030-3
  24. Y. Wang, T. Hu, H. Li, G. Dong, W. Wong, and V. Chen, "Enhancing membrane permeability for $CO_2$ capture through blending commodity polymers with selected PEO and PEO-PDMS copolymers and composite hollow fibres", Energy Procedia, 63, 202 (2014). https://doi.org/10.1016/j.egypro.2014.11.021
  25. L. Liu, A. Chakma, and X. Feng, "Preparation of hollow fiber poly (ether block amide)/polysulfone composite membranes for separation of carbon dioxide from nitrogen", Chem. Eng. J., 105, 43 (2004). https://doi.org/10.1016/j.cej.2004.08.005
  26. A. Zulhairun, Z. Fachrurrazi, M. N. Izwanne, and A. Ismail, "Asymmetric hollow fiber membrane coated with polydimethylsiloxane-metal organic framework hybrid layer for gas separation", Sep. Purif. Technol., 146, 85 (2015). https://doi.org/10.1016/j.seppur.2015.03.033
  27. F. Nie, G. He, W. Zhao, J. Ju, Y. Liu, and Y. Dai, "Improving $CO_2$ separation performance of the polyethylene glycol (PEG)/polytrifluoropropylsiloxane (PTFPMS) blend composite membrane", J. Polym. Res., 21, 319 (2014). https://doi.org/10.1007/s10965-013-0319-x