DOI QR코드

DOI QR Code

Transmembrane Pressure of Backwashing, Filtration/Relaxation and the Sinusoidal Flux Continuous Operation Modes for Submerged Plate Membrane

역세척, 여과/이완 및 사인파형 연속투과 운전방식에 따른 침지형 평막의 막간차압

  • Kim, Jae Hyo (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Kim, Eun Soo (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Chung, Kun Yong (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology)
  • 김재효 (서울과학기술대학교 화공생명공학과) ;
  • 김은수 (서울과학기술대학교 화공생명공학과) ;
  • 정건용 (서울과학기술대학교 화공생명공학과)
  • Received : 2019.07.24
  • Accepted : 2019.08.19
  • Published : 2019.08.31

Abstract

In this study, permeation experiments were conducted using naturally circulating spherical beads, backwashable plate membrane and the air supplied from the bottom of the MBR. The activated sludge solution was maintained at 8,000 mg/L of MLSS and compared transmembrane pressure (TMP) with respect to FR (filtration and relaxation), FR/BW (filtration and relaxation/backwashing), SFCO (sinusoidal filtration continuous operation) and SFCO/BW (sinusoidal filtration continuous operation/backwashing). As the backwashing flux decreased from 47 to $14L/m^2{\cdot}hr$, the TMP increased generally, but the TMP of FR system increased significantly comparing with SFCO. In addition, the backwashing method reduced more TMP comparing to the cleaning method using spherical beads, and it was confirmed that the operation method using the spherical beads and the backwashing simultaneously is more effective than each method.

본 연구에서는 역세척이 가능한 평막과 MBR 하부에서 공급되는 공기 및 자연적으로 순환되는 구형 입자를 이용하여 투과 실험하였다. 활성슬러지 수용액은 MLSS 8,000 mg/L로 유지하였으며 여과/이완(FR), 이완시 역세척(FR/BW), 사인파형 연속투과 운전(SFCO) 및 사인파형 연속투과 운전 시 역세척(SFCO/BW) 방식에 따른 막간차압(TMP)을 측정하였다. 역세척 유량을 47에서 $14L/m^2{\cdot}hr$로 감소시키면, TMP가 증가하였으며 SFCO보다는 FR 방식의 TMP가 크게 증가하였다. 또한 역세척 방식이 구형입자를 이용한 세척방식보다 TMP를 더 감소시켰으며, 구형입자와 역세척 방식을 동시에 사용하면 각각의 방법보다 더 효과적임을 확인할 수 있었다.

Keywords

References

  1. A. Fenu, J. Roels, T. Wambecq, K. DeGussem, C. Thoeye, G. DeGueldre, and B. van De Steene, "Energy audit of a full scale MBR system", Desalination, 262, 121 (2010) https://doi.org/10.1016/j.desal.2010.05.057
  2. J. A. Gil, L. Tua, A. Rueda, B. Montano, M. Rodriguez, and D. Prats, "Monitoring and analysis of the energy cost of an MBR", Desalination, 250, 997 (2010) https://doi.org/10.1016/j.desal.2009.09.089
  3. Z. Wang, J. Ma, C. Y. Tang, K. Kimura, Q. Wang, and X. Han, "Membrane cleaning in membrane bioreactors: A review", J. Membr. Sci., 468, 276 (2017). https://doi.org/10.1016/j.memsci.2014.05.060
  4. H. S. Oh and C. H. Lee, "Origin and evolution of quorum quenching technology for biofouling control in MBRs for wastewater treatment", J. Membr. Sci., 554, 331 (2018). https://doi.org/10.1016/j.memsci.2018.03.019
  5. K. Y. Kim, J. H. Kim, Y. H. Kim, and H. S. Kim, "The effect of coagulant on filtration performance in submerged MBR system", Membr. J., 16, 182 (2006).
  6. Y. K. Choi, O. S. Kwon, H. S. Park, and S. H. Noh, "Mechanism of gel layer removal for intermittent aeration in the MBR Process", Membr. J., 16, 188 (2006).
  7. J. H. Choi, J. B. Lee, and I. C. Kim, "A characterization of the nano-material MF membranes with excellent fouling resistance", Membr. J., 15, 289 (2005).
  8. J. H. Choi, J. B. Lee, and I. C. Kim, "Development of MBR system commercialization technology using a membrane with a good fouling resistance", Membr. J., 18, 35 (2008).
  9. Y. Gao, D. Ma, Q. Yue, B. Gao, and X. Huang, "Effect of powdered activated carbon (PAC) on MBR performance and effluent trihalomethane formation: At the initial stage of PAC addition", Bioresource Technology, 216, 838 (2016). https://doi.org/10.1016/j.biortech.2016.06.030
  10. C. Psoch and S. Schiewer, "Anti-fouling application of air sparging and backflushing for MBR", J. Membr. Sci., 283, 273 (2006). https://doi.org/10.1016/j.memsci.2006.06.042
  11. I. H. Won, H. W. Lee, H. J. Gwak, and K. Y. Chung, "Transmembrane pressure of flat-sheet membrane in emulsion type cutting oil solution for symmetric/ asymmetric sinusoidal flux continuous operation mode", Membr. J., 25, 320 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.320
  12. D. I. Jeong, J. S. Min, S. M. Lee, and K. Y. Chung, "Transmembrane pressures for the submerged flat membrane in the activated sludge solution by circulation of the cleaning spherical beads", Membr. J., 28, 62 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.62