DOI QR코드

DOI QR Code

Arg-Leu-Tyr-Glu Suppresses Retinal Endothelial Permeability and Choroidal Neovascularization by Inhibiting the VEGF Receptor 2 Signaling Pathway

  • Park, Wonjin (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University) ;
  • Baek, Yi-Yong (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University) ;
  • Kim, Joohwan (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University) ;
  • Jo, Dong Hyun (Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital) ;
  • Choi, Seunghwan (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University) ;
  • Kim, Jin Hyoung (Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital) ;
  • Kim, Taesam (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University) ;
  • Kim, Suji (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University) ;
  • Park, Minsik (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University) ;
  • Kim, Ji Yoon (Department of Anesthesiology and Pain Medicine, Hanyang University Hospital) ;
  • Won, Moo-Ho (Department of Neurobiology, School of Medicine, Kangwon National University) ;
  • Ha, Kwon-Soo (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University) ;
  • Kim, Jeong Hun (Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital) ;
  • Kwon, Young-Guen (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Kim, Young-Myeong (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University)
  • Received : 2019.03.07
  • Accepted : 2019.04.04
  • Published : 2019.09.01

Abstract

Vascular endothelial growth factor (VEGF) plays a pivotal role in pathologic ocular neovascularization and vascular leakage via activation of VEGF receptor 2 (VEGFR2). This study was undertaken to evaluate the therapeutic mechanisms and effects of the tetrapeptide Arg-Leu-Tyr-Glu (RLYE), a VEGFR2 inhibitor, in the development of vascular permeability and choroidal neovascularization (CNV). In cultured human retinal microvascular endothelial cells (HRMECs), treatment with RLYE blocked VEGF-A-induced phosphorylation of VEGFR2, Akt, ERK, and endothelial nitric oxide synthase (eNOS), leading to suppression of VEGF-A-mediated hyper-production of NO. Treatment with RLYE also inhibited VEGF-A-stimulated angiogenic processes (migration, proliferation, and tube formation) and the hyperpermeability of HRMECs, in addition to attenuating VEGF-A-induced angiogenesis and vascular permeability in mice. The anti-vascular permeability activity of RLYE was correlated with enhanced stability and positioning of the junction proteins VE-cadherin, ${\beta}$-catenin, claudin-5, and ZO-1, critical components of the cortical actin ring structure and retinal endothelial barrier, at the boundary between HRMECs stimulated with VEGF-A. Furthermore, intravitreally injected RLYE bound to retinal microvascular endothelium and inhibited laser-induced CNV in mice. These findings suggest that RLYE has potential as a therapeutic drug for the treatment of CNV by preventing VEGFR2-mediated vascular leakage and angiogenesis.

Keywords

References

  1. Aiello, L. P., Avery, R. L., Arrigg, P. G., Keyt, B. A., Jampel, H. D., Shah, S. T., Pasquale, L. R., Thieme, H., Iwamoto, M. A., Park, J. E., Nguyen, H. V., Aiello, L. M., Ferrara, N. and King, G. L. (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480-1487. https://doi.org/10.1056/NEJM199412013312203
  2. Aiello, L. P., Pierce, E. A., Foley, E. D., Takagi, H., Chen, H., Riddle, L., Ferrara, N., King, G. L. and Smith, L. E. (1995) Suppression of retinal neovacscularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc. Natl. Acad. Sci. U.S.A. 92, 10457-10461. https://doi.org/10.1073/pnas.92.23.10457
  3. Aird, W. C. (2006) Mechanisms of endothelial cell heterogeneity in health and disease. Circ. Res. 98,159-162. https://doi.org/10.1161/01.RES.0000204553.32549.a7
  4. Angkawinitwong, U., Awwad, S., Khaw, P. T., Brocchini, S. and Williams, G. R. (2017) Electrospun formulations of bevacizumab for sustained release in the eye. Acta Biomater. 64,126-136. https://doi.org/10.1016/j.actbio.2017.10.015
  5. Arrieta, O., Zatarain-Barron, Z. L., Cardona, A. F., Carmona, A. and Lopez-Mejia, M. (2017) Ramucirumab in the treatment of non-small cell lung cancer. Expert. Opin. Drug. Saf. 5, 637-644.
  6. Aziz, M. A., Serya, R. A., Lasheen, D. S., Abdel-Aziz, A. K., Esmat, A., Mansour, A. M., Singab, A. N. and Abouzid, K. A. (2016) Discovery of potent VEGFR-2 inhibitors based on Furopyrimidine and thienopyrimidne scaffolds as cancer targeting agents. Sci. Rep. 6, 24460. https://doi.org/10.1038/srep24460
  7. Baek, Y. Y., Lee, D. K., Kim, J., Kim, J. H., Park, W., Kim, T., Han, S., Jeoung, D., You, J. C., Lee, H., Won, M. H., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2017) Arg-Ley-Tyr-Glu tetrapeptide inhibits tumor progression by suppressing angiogenesis and vascular permeability via VEGF receptor-2 antagonism. Oncotarget. 14, 11763-11777.
  8. Baek, Y. Y., Lee, D. K., So, J. H., Kim, C. H., Jeoung, D., Lee, H., Choe, J., Won, M. H., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2015) The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis. Biochem. Biophys. Res. Commun. 463, 532-537. https://doi.org/10.1016/j.bbrc.2015.05.073
  9. Bee, Y. S., Ma, Y. L., Chen, J., Tsai, P. J., Sheu, S. J., Lin, H. C., Huang, H., Liu, G. S. and Tai, M. H. (2018) Inhibition of experimental choroidal neovascularization by a novel peptide derived from calreticulin anti-angiogenic domain. Int. J. Mol. Sci. 19, 10. https://doi.org/10.3390/ijms19010010
  10. Campochiaro, P. A., Aiello, L. P. and Rosenfeld, P. J. (2016) Anti-vascular endothelial growth factor agents in the treatment of retinal disease: from bench to bedside. Ophthalmology 123, S78-S88. https://doi.org/10.1016/j.ophtha.2016.04.056
  11. Cao, L., Weetall, M., Bombard, J., Qi, H., Arasu, T., Lennox, W., Hedrick, J., Sheedy, J., Risher, N., Brooks, P. C., Trifillis, P., Trotta, C., Moon, Y. C., Babiak, J., Almstead, N. G., Colacino, J. M., Davis, T. W. and Peltz, S. W. (2016) Discovery of novel small molecule inhibitors of VEGF expression in tumor cells using a cell-based high throughput screening platform. PLoS ONE 11, e0168366. https://doi.org/10.1371/journal.pone.0168366
  12. Carmeliet, P. (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69 Suppl 3, 4-10. https://doi.org/10.1159/000088478
  13. CATT Research Group, Martin, D. F., Maguire, M. G., Ying, G. S., Grunwald, J. E., Fine, S. L. and Jaffe, G. J. (2011) Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 364, 1897-1908. https://doi.org/10.1056/NEJMoa1102673
  14. Cunha-Vaz, J., Bernardes, R. and Lobo, C. (2011) Blood-retinal barrier. Eur. J. Ophthalmol. 21 Suppl 6, S3-S9. https://doi.org/10.5301/EJO.2010.6049
  15. Di Lorenzo, A., Lin, M. I., Murata, T., Landskroner-Eiger, S., Schleicher, M., Kothiya, M., Iwakiri, Y., Yu, J., Huang, P. L. and Sessa, W. C. (2013) eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases. J. Cell Sci. 126, 5541-5552. https://doi.org/10.1242/jcs.115972
  16. Ferrara, N. and Adamis, A. P. (2016) Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug. Discov. 6, 385-403. https://doi.org/10.1038/nrd.2015.17
  17. Ferrara, N., Gerber, H. P. and LeCounter, J. (2003) The biology of VEGF and its receptors. Nat. Med. 6, 669-676.
  18. Ferrara, N., Mass, R. D., Campa, C. and Kim, R. (2007) Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu. Rev. Med. 58, 491-504. https://doi.org/10.1146/annurev.med.58.061705.145635
  19. Ferrara, N. (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 4, 581-611. https://doi.org/10.1210/er.2003-0027
  20. Ferrara, N. (2010) Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat. Med. 16, 1107-1111. https://doi.org/10.1038/nm1010-1107
  21. Grisanti, S. and Tatar, O. (2008) The role of vascular endothelial growth factor and other endogenous interplayers in age-related macular degeneration. Prog. Retin. Eye. Res. 24, 372-390. https://doi.org/10.1016/j.preteyeres.2008.05.002
  22. Hernandez-Zimbron, L. F., Zamora-Alvarado, R., Ochoa-De, la. Paz. L., Velez-Montoya, R., Zenteno, E., Gulias-Canizo, R., Quiroz-Mercado, H. and Gonzalez-Salinas, R. (2018) Age-related macular degeneration: New paradigms for treatment and management of AMD. Oxid. Med. Cell. Longev. 1, 8374647.
  23. Hofer, E. and Schweighofer, B. (2007) Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis. Thromb. Haemost. 97, 355-363. https://doi.org/10.1160/TH06-08-0470
  24. Holz, F. G., Schmitz-Valckenberg, S. and Fleckenstein, M. (2014) Recent developments in the treatment of age-related macular degeneration. J. Clin. Invest. 124, 1430-1438. https://doi.org/10.1172/JCI71029
  25. Jo, D. H., Kim, J. H., Yang, W., Kim, H., Chang, S., Kim, D., Chang, M., Lee, K., Chung, J. and Kim, J. H. (2017) Anti-complement component 5 antibody targeting MG4 domain inhibits choroidal neovascularization. Oncotarget 8, 45506-45516. https://doi.org/10.18632/oncotarget.17221
  26. Karar, J. and Maity, A. (2011) PI3K/Akt/mTOR pathway in angiogenesis. Front. Mol. NeuroSci. 4, 51. https://doi.org/10.3389/fnmol.2011.00051
  27. Kashani, A. H., Lebkowski, J. S., Rahhal, F. M., Avery, R. L., Salehi-Had, H., Dang, W., Lin, C. M., Mitra, D., Zhu, D., Thomas, B. B., Hikita, S. T., Pennington, B. O., Johnson, L. V., Clegg, D. O., Hinton, D. R. and Humayun, M. S. (2018) A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci. Transl. Med. 10, 435.
  28. Kauppinen, A., Jussi, J., Paterno., Blasiak, J., Salminen, A. and Kaarniranta, K. (2016) Inflammation and its role in age-related macular degeneration. Cell. Mol. Life. Sci. 73, 1765-1786. https://doi.org/10.1007/s00018-016-2147-8
  29. Kim, J., Kim, T. E., Kim, J. A., Yun, J. H., Sohn, S., Shim, S. R., Lee, S. H. and Kim, S. J. (2014) Intravitreal tanibirumab, a fully human monoclonal antibody against vascular endothelial growth factor receptor 2, partially suppresses and regresses laser-induced choroidal neovascularization in a rat model. J. Ocul. Pharmacol. Ther. 10, 847-853.
  30. Klein, R., Klein, B. E., Knudtson, M. D., Wong, T. Y., Cotch, M. F., Liu, K., Burke, G., Saad, M. F. and Jacobs, D. R., Jr. (2006) Prevalence of age-related macular degeneration in 4 racial/ethnic groups in the multi-ethnic study of atherosclerosis. Ophthlamology 113, 373-380. https://doi.org/10.1016/j.ophtha.2005.12.013
  31. Klein, R., Klein, B. E., Knudtson, M. D., Meuer, S. M., Swift, M. and Gangnon, R. E. (2007) Fifteen-year cumulative incidence of age-related macular degeneration: the beaver dam eye study. Ophthalmology 114, 253-262. https://doi.org/10.1016/j.ophtha.2006.10.040
  32. Lambert, V., Lecomte, J., Hansen, S., Blacher, S., Conzalez, M. L., Struman, I., Sounni, N. E., Rozet, E., de, Tullio, P., Foidart, J. M., Rakic, J. M. and Noel, A. (2013) Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat. Protoc. 11, 2197-2211.
  33. Langenkamp, E. and Molema, G. (2009) Microvascular endothelial cell heterogeneity: general concepts and pharmacological consequences for anti-angiogenic therapy of cancer. Cell. Tissue. Res. 335, 205-222. https://doi.org/10.1007/s00441-008-0642-4
  34. Liu, M., Kluger, M. S., D'Alessio, A., Garcia-Cardena, G. and Pober, J. S. (2008) Regulation of arterial-venous differences in tumor necrosis factor responsiveness of endothelial cells by anatomic context. Am. J. Pathol. 72, 1088-1099.
  35. Miler, J. W., Le, Couter, J., Strauss, E. C. and Ferrara, N. (2013) Vascular endothelial growth factor a in intraocular vascular disease. Ophthalmology 120, 106-114. https://doi.org/10.1016/j.ophtha.2012.07.038
  36. Miller, J. W., Adamis, A. P., Shima, D. T., D'Amore, P. A., Moulton, R. S., O'Reilly, M. S., Folkman, J., Dvorak, H. F., Brown, L. F., Berse, B., Yeo, T.-K. and Yeo, K.-T. (1994) Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am. J. Pathol. 145, 574-584.
  37. Mitchell, P., Liew, G., Gopinath, B. and Wong, T. Y. (2018) Age-related macular degeneration. Lancet 392, 1147-1159. https://doi.org/10.1016/S0140-6736(18)31550-2
  38. Neves, Cardoso, P., Pinheiro, A. F., Meira, J., Pedrosa, A. C., Falcao, M. S., Pinheiro-Costa,J., Falcao-Reis, F. and Carneiro, A. M. (2017) Switch to aflibercept in the treatment of neovascular AMD: long-term results. J. Ophthalmol. 2017, 6835782.
  39. Park, M., Choi, S., Kim, S., Kim, J., Lee, D. K., Park, W., Kim, T., Jung, J., Hwang, J. Y., Won, M. H., Ryoo, S., Kang, S. G., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2019) NF-${\kappa}B$-responsive miR-155 induces functional impairment of vascular smooth muscle cells by downregulating soluble guanylyl cyclase. Exp. Mol. Med. 51, 17. https://doi.org/10.1038/s12276-019-0212-8
  40. Park, U. C., Shin, J. Y., McCarthy, L. C., Kim, S. J., Park, J. H., Chung, H. and Yu, H. G. (2014) Pharmacogenetic associations with long-term response to anti-vascular endothelial growth factor treatment in neovascular AMD patients. Mol. Vis. 20, 1680-1694.
  41. Pierce, E. A., Avery, R. L., Foley, E. D., Aiello, L. P. and Smith, L. E. (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc. Natl.Acad. Sci. U.S.A. 92, 905-909. https://doi.org/10.1073/pnas.92.3.905
  42. Semeraro, F., Morescalchi, F., Duse, S., Parmeggiani, F., Gambicorti, E. and Costagliola, C. (2013) Aflibercept in wet AMD: specific role and optimal use. Drug. Des. Devel. Ther. 7, 711-722.
  43. Shah, R. S., Soetikno, B. T., Lajko, M. and Fawzi, A. A. (2015) A mouse model for laser-induced choroidal neovascularization. J. Vis. Exp. 106, e53502.
  44. Shibuya, M. (2006) Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt1): a dual regulator for angiogenesis. Angiogenesis 9, 225-230. https://doi.org/10.1007/s10456-006-9055-8
  45. Shi, F., Wang, Y. C., Zhao, T. Z., Zhang, S., Du, T. Y., Yang, C. B., Li, Y. H. and Sun, X. Q. (2012) Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway. PLoS ONE 7, e40365. https://doi.org/10.1371/journal.pone.0040365
  46. Simo, R. and Hernandez, C. (2008) Intravitreous anti-VEGF for diabetic retinopathy: hopes and fears for a new therapeutic strategy. Diabetologia 9, 1574-1580. https://doi.org/10.1007/s00125-008-0989-9
  47. Spaide, R. F., Laud, K., Fine, H. F., Klancnik, J. M., Jr., Meyerle, C. B., Yannuzzi, L. A., Sorenson, J., Slakter, J., Fisher, Y. L. and Coonet, M. J. (2006) Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration. Retina 26, 383-390. https://doi.org/10.1097/00006982-200604000-00001
  48. Taimeh, Z., Loughran, J., Birks, E. J. and Bolli, R. (2013) Vascular endothelial growth factor in heart failure. Nat. Rev. Cardiol. 9, 519-530.
  49. Veloso, C. E., de, Almeida, L. N., Recchia, F. M., Pelayes, D. and Nehemy, M. B. (2014) VEGF gene polymorphism and response to intravitreal ranibizumab in neovascular age-related macular degeneration. Ophthalmic. Res. 51, 1-8. https://doi.org/10.1159/000354328
  50. Yan, Z., Shi, H., Zhu, R., Li, L., Qin, B., Kang, L., Chen H. and Guan H. (2018) Inhibition of YAP ameliorates choroidal neovascularization via inhibiting endothelial cell proliferation. Mol. Vis. 24, 83-93.

Cited by

  1. Propofol attenuated TNF-α-modulated occludin expression by inhibiting Hif-1α/ VEGF/ VEGFR-2/ ERK signaling pathway in hCMEC/D3 cells vol.19, pp.1, 2019, https://doi.org/10.1186/s12871-019-0788-5
  2. Regenerative Potential of Carbon Monoxide in Adult Neural Circuits of the Central Nervous System vol.21, pp.7, 2019, https://doi.org/10.3390/ijms21072273