References
- Aiello, L. P., Avery, R. L., Arrigg, P. G., Keyt, B. A., Jampel, H. D., Shah, S. T., Pasquale, L. R., Thieme, H., Iwamoto, M. A., Park, J. E., Nguyen, H. V., Aiello, L. M., Ferrara, N. and King, G. L. (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480-1487. https://doi.org/10.1056/NEJM199412013312203
- Aiello, L. P., Pierce, E. A., Foley, E. D., Takagi, H., Chen, H., Riddle, L., Ferrara, N., King, G. L. and Smith, L. E. (1995) Suppression of retinal neovacscularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc. Natl. Acad. Sci. U.S.A. 92, 10457-10461. https://doi.org/10.1073/pnas.92.23.10457
- Aird, W. C. (2006) Mechanisms of endothelial cell heterogeneity in health and disease. Circ. Res. 98,159-162. https://doi.org/10.1161/01.RES.0000204553.32549.a7
- Angkawinitwong, U., Awwad, S., Khaw, P. T., Brocchini, S. and Williams, G. R. (2017) Electrospun formulations of bevacizumab for sustained release in the eye. Acta Biomater. 64,126-136. https://doi.org/10.1016/j.actbio.2017.10.015
- Arrieta, O., Zatarain-Barron, Z. L., Cardona, A. F., Carmona, A. and Lopez-Mejia, M. (2017) Ramucirumab in the treatment of non-small cell lung cancer. Expert. Opin. Drug. Saf. 5, 637-644.
- Aziz, M. A., Serya, R. A., Lasheen, D. S., Abdel-Aziz, A. K., Esmat, A., Mansour, A. M., Singab, A. N. and Abouzid, K. A. (2016) Discovery of potent VEGFR-2 inhibitors based on Furopyrimidine and thienopyrimidne scaffolds as cancer targeting agents. Sci. Rep. 6, 24460. https://doi.org/10.1038/srep24460
- Baek, Y. Y., Lee, D. K., Kim, J., Kim, J. H., Park, W., Kim, T., Han, S., Jeoung, D., You, J. C., Lee, H., Won, M. H., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2017) Arg-Ley-Tyr-Glu tetrapeptide inhibits tumor progression by suppressing angiogenesis and vascular permeability via VEGF receptor-2 antagonism. Oncotarget. 14, 11763-11777.
- Baek, Y. Y., Lee, D. K., So, J. H., Kim, C. H., Jeoung, D., Lee, H., Choe, J., Won, M. H., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2015) The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis. Biochem. Biophys. Res. Commun. 463, 532-537. https://doi.org/10.1016/j.bbrc.2015.05.073
- Bee, Y. S., Ma, Y. L., Chen, J., Tsai, P. J., Sheu, S. J., Lin, H. C., Huang, H., Liu, G. S. and Tai, M. H. (2018) Inhibition of experimental choroidal neovascularization by a novel peptide derived from calreticulin anti-angiogenic domain. Int. J. Mol. Sci. 19, 10. https://doi.org/10.3390/ijms19010010
- Campochiaro, P. A., Aiello, L. P. and Rosenfeld, P. J. (2016) Anti-vascular endothelial growth factor agents in the treatment of retinal disease: from bench to bedside. Ophthalmology 123, S78-S88. https://doi.org/10.1016/j.ophtha.2016.04.056
- Cao, L., Weetall, M., Bombard, J., Qi, H., Arasu, T., Lennox, W., Hedrick, J., Sheedy, J., Risher, N., Brooks, P. C., Trifillis, P., Trotta, C., Moon, Y. C., Babiak, J., Almstead, N. G., Colacino, J. M., Davis, T. W. and Peltz, S. W. (2016) Discovery of novel small molecule inhibitors of VEGF expression in tumor cells using a cell-based high throughput screening platform. PLoS ONE 11, e0168366. https://doi.org/10.1371/journal.pone.0168366
- Carmeliet, P. (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69 Suppl 3, 4-10. https://doi.org/10.1159/000088478
- CATT Research Group, Martin, D. F., Maguire, M. G., Ying, G. S., Grunwald, J. E., Fine, S. L. and Jaffe, G. J. (2011) Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 364, 1897-1908. https://doi.org/10.1056/NEJMoa1102673
- Cunha-Vaz, J., Bernardes, R. and Lobo, C. (2011) Blood-retinal barrier. Eur. J. Ophthalmol. 21 Suppl 6, S3-S9. https://doi.org/10.5301/EJO.2010.6049
- Di Lorenzo, A., Lin, M. I., Murata, T., Landskroner-Eiger, S., Schleicher, M., Kothiya, M., Iwakiri, Y., Yu, J., Huang, P. L. and Sessa, W. C. (2013) eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases. J. Cell Sci. 126, 5541-5552. https://doi.org/10.1242/jcs.115972
- Ferrara, N. and Adamis, A. P. (2016) Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug. Discov. 6, 385-403. https://doi.org/10.1038/nrd.2015.17
- Ferrara, N., Gerber, H. P. and LeCounter, J. (2003) The biology of VEGF and its receptors. Nat. Med. 6, 669-676.
- Ferrara, N., Mass, R. D., Campa, C. and Kim, R. (2007) Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu. Rev. Med. 58, 491-504. https://doi.org/10.1146/annurev.med.58.061705.145635
- Ferrara, N. (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 4, 581-611. https://doi.org/10.1210/er.2003-0027
- Ferrara, N. (2010) Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat. Med. 16, 1107-1111. https://doi.org/10.1038/nm1010-1107
- Grisanti, S. and Tatar, O. (2008) The role of vascular endothelial growth factor and other endogenous interplayers in age-related macular degeneration. Prog. Retin. Eye. Res. 24, 372-390. https://doi.org/10.1016/j.preteyeres.2008.05.002
- Hernandez-Zimbron, L. F., Zamora-Alvarado, R., Ochoa-De, la. Paz. L., Velez-Montoya, R., Zenteno, E., Gulias-Canizo, R., Quiroz-Mercado, H. and Gonzalez-Salinas, R. (2018) Age-related macular degeneration: New paradigms for treatment and management of AMD. Oxid. Med. Cell. Longev. 1, 8374647.
- Hofer, E. and Schweighofer, B. (2007) Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis. Thromb. Haemost. 97, 355-363. https://doi.org/10.1160/TH06-08-0470
- Holz, F. G., Schmitz-Valckenberg, S. and Fleckenstein, M. (2014) Recent developments in the treatment of age-related macular degeneration. J. Clin. Invest. 124, 1430-1438. https://doi.org/10.1172/JCI71029
- Jo, D. H., Kim, J. H., Yang, W., Kim, H., Chang, S., Kim, D., Chang, M., Lee, K., Chung, J. and Kim, J. H. (2017) Anti-complement component 5 antibody targeting MG4 domain inhibits choroidal neovascularization. Oncotarget 8, 45506-45516. https://doi.org/10.18632/oncotarget.17221
- Karar, J. and Maity, A. (2011) PI3K/Akt/mTOR pathway in angiogenesis. Front. Mol. NeuroSci. 4, 51. https://doi.org/10.3389/fnmol.2011.00051
- Kashani, A. H., Lebkowski, J. S., Rahhal, F. M., Avery, R. L., Salehi-Had, H., Dang, W., Lin, C. M., Mitra, D., Zhu, D., Thomas, B. B., Hikita, S. T., Pennington, B. O., Johnson, L. V., Clegg, D. O., Hinton, D. R. and Humayun, M. S. (2018) A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci. Transl. Med. 10, 435.
- Kauppinen, A., Jussi, J., Paterno., Blasiak, J., Salminen, A. and Kaarniranta, K. (2016) Inflammation and its role in age-related macular degeneration. Cell. Mol. Life. Sci. 73, 1765-1786. https://doi.org/10.1007/s00018-016-2147-8
- Kim, J., Kim, T. E., Kim, J. A., Yun, J. H., Sohn, S., Shim, S. R., Lee, S. H. and Kim, S. J. (2014) Intravitreal tanibirumab, a fully human monoclonal antibody against vascular endothelial growth factor receptor 2, partially suppresses and regresses laser-induced choroidal neovascularization in a rat model. J. Ocul. Pharmacol. Ther. 10, 847-853.
- Klein, R., Klein, B. E., Knudtson, M. D., Wong, T. Y., Cotch, M. F., Liu, K., Burke, G., Saad, M. F. and Jacobs, D. R., Jr. (2006) Prevalence of age-related macular degeneration in 4 racial/ethnic groups in the multi-ethnic study of atherosclerosis. Ophthlamology 113, 373-380. https://doi.org/10.1016/j.ophtha.2005.12.013
- Klein, R., Klein, B. E., Knudtson, M. D., Meuer, S. M., Swift, M. and Gangnon, R. E. (2007) Fifteen-year cumulative incidence of age-related macular degeneration: the beaver dam eye study. Ophthalmology 114, 253-262. https://doi.org/10.1016/j.ophtha.2006.10.040
- Lambert, V., Lecomte, J., Hansen, S., Blacher, S., Conzalez, M. L., Struman, I., Sounni, N. E., Rozet, E., de, Tullio, P., Foidart, J. M., Rakic, J. M. and Noel, A. (2013) Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat. Protoc. 11, 2197-2211.
- Langenkamp, E. and Molema, G. (2009) Microvascular endothelial cell heterogeneity: general concepts and pharmacological consequences for anti-angiogenic therapy of cancer. Cell. Tissue. Res. 335, 205-222. https://doi.org/10.1007/s00441-008-0642-4
- Liu, M., Kluger, M. S., D'Alessio, A., Garcia-Cardena, G. and Pober, J. S. (2008) Regulation of arterial-venous differences in tumor necrosis factor responsiveness of endothelial cells by anatomic context. Am. J. Pathol. 72, 1088-1099.
- Miler, J. W., Le, Couter, J., Strauss, E. C. and Ferrara, N. (2013) Vascular endothelial growth factor a in intraocular vascular disease. Ophthalmology 120, 106-114. https://doi.org/10.1016/j.ophtha.2012.07.038
- Miller, J. W., Adamis, A. P., Shima, D. T., D'Amore, P. A., Moulton, R. S., O'Reilly, M. S., Folkman, J., Dvorak, H. F., Brown, L. F., Berse, B., Yeo, T.-K. and Yeo, K.-T. (1994) Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am. J. Pathol. 145, 574-584.
- Mitchell, P., Liew, G., Gopinath, B. and Wong, T. Y. (2018) Age-related macular degeneration. Lancet 392, 1147-1159. https://doi.org/10.1016/S0140-6736(18)31550-2
- Neves, Cardoso, P., Pinheiro, A. F., Meira, J., Pedrosa, A. C., Falcao, M. S., Pinheiro-Costa,J., Falcao-Reis, F. and Carneiro, A. M. (2017) Switch to aflibercept in the treatment of neovascular AMD: long-term results. J. Ophthalmol. 2017, 6835782.
-
Park, M., Choi, S., Kim, S., Kim, J., Lee, D. K., Park, W., Kim, T., Jung, J., Hwang, J. Y., Won, M. H., Ryoo, S., Kang, S. G., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2019) NF-
${\kappa}B$ -responsive miR-155 induces functional impairment of vascular smooth muscle cells by downregulating soluble guanylyl cyclase. Exp. Mol. Med. 51, 17. https://doi.org/10.1038/s12276-019-0212-8 - Park, U. C., Shin, J. Y., McCarthy, L. C., Kim, S. J., Park, J. H., Chung, H. and Yu, H. G. (2014) Pharmacogenetic associations with long-term response to anti-vascular endothelial growth factor treatment in neovascular AMD patients. Mol. Vis. 20, 1680-1694.
- Pierce, E. A., Avery, R. L., Foley, E. D., Aiello, L. P. and Smith, L. E. (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc. Natl.Acad. Sci. U.S.A. 92, 905-909. https://doi.org/10.1073/pnas.92.3.905
- Semeraro, F., Morescalchi, F., Duse, S., Parmeggiani, F., Gambicorti, E. and Costagliola, C. (2013) Aflibercept in wet AMD: specific role and optimal use. Drug. Des. Devel. Ther. 7, 711-722.
- Shah, R. S., Soetikno, B. T., Lajko, M. and Fawzi, A. A. (2015) A mouse model for laser-induced choroidal neovascularization. J. Vis. Exp. 106, e53502.
- Shibuya, M. (2006) Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt1): a dual regulator for angiogenesis. Angiogenesis 9, 225-230. https://doi.org/10.1007/s10456-006-9055-8
- Shi, F., Wang, Y. C., Zhao, T. Z., Zhang, S., Du, T. Y., Yang, C. B., Li, Y. H. and Sun, X. Q. (2012) Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway. PLoS ONE 7, e40365. https://doi.org/10.1371/journal.pone.0040365
- Simo, R. and Hernandez, C. (2008) Intravitreous anti-VEGF for diabetic retinopathy: hopes and fears for a new therapeutic strategy. Diabetologia 9, 1574-1580. https://doi.org/10.1007/s00125-008-0989-9
- Spaide, R. F., Laud, K., Fine, H. F., Klancnik, J. M., Jr., Meyerle, C. B., Yannuzzi, L. A., Sorenson, J., Slakter, J., Fisher, Y. L. and Coonet, M. J. (2006) Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration. Retina 26, 383-390. https://doi.org/10.1097/00006982-200604000-00001
- Taimeh, Z., Loughran, J., Birks, E. J. and Bolli, R. (2013) Vascular endothelial growth factor in heart failure. Nat. Rev. Cardiol. 9, 519-530.
- Veloso, C. E., de, Almeida, L. N., Recchia, F. M., Pelayes, D. and Nehemy, M. B. (2014) VEGF gene polymorphism and response to intravitreal ranibizumab in neovascular age-related macular degeneration. Ophthalmic. Res. 51, 1-8. https://doi.org/10.1159/000354328
- Yan, Z., Shi, H., Zhu, R., Li, L., Qin, B., Kang, L., Chen H. and Guan H. (2018) Inhibition of YAP ameliorates choroidal neovascularization via inhibiting endothelial cell proliferation. Mol. Vis. 24, 83-93.
Cited by
- Propofol attenuated TNF-α-modulated occludin expression by inhibiting Hif-1α/ VEGF/ VEGFR-2/ ERK signaling pathway in hCMEC/D3 cells vol.19, pp.1, 2019, https://doi.org/10.1186/s12871-019-0788-5
- Regenerative Potential of Carbon Monoxide in Adult Neural Circuits of the Central Nervous System vol.21, pp.7, 2019, https://doi.org/10.3390/ijms21072273