DOI QR코드

DOI QR Code

인장과 휨을 동시에 받는 프리스트레스 강선의 굴절인장성능 평가

Numerical Study on Wire Strength Under Both Tension and Deflection for Use as Prestressing Steel

  • 김진국 (서울과학기술대학교 건설시스템공학과) ;
  • 성택룡 ((주)포스코 구조연구그룹) ;
  • 양준모 (계명대학교 토목공학과)
  • 투고 : 2018.11.09
  • 심사 : 2018.12.18
  • 발행 : 2019.01.01

초록

구조물의 보강을 위해 프리스트레스 강선에는 인장력이 도입되는데 이 강선은 덕트 및 편향장치에 의해서 휨을 동시에 받게 된다. 이와 같이 인장과 휨을 동시에 받는 프리스트레스 강선의 굴절인장성능을 평가하기 위해 강선의 직경, 맨드럴 직경, 맨드럴과 강선 사이 마찰계수를 변수로 하여 총 600종에 대한 굴절인장 변수해석을 실시하였다. 해석 결과, 강선의 직경이 클수록 낮은 굴절인장성능을 나타내었고, 그 영향은 강선 연신율의 증가에 따라 감소하였다. 강선의 굴절인장성능에 대한 맨드럴 직경, 맨드럴-강선 간 마찰계수의 영향은 매우 작게 나타났지만, 맨드럴-강연선 간 마찰계수에 대한 추가 해석 결과 상대적으로 높은 상관성을 보였다. 따라서, 굴절인장성능 확보를 위해서는 충분한 연신율 확보가 우선되어야 하고, 연신율 확보에 제약이 있을 시 적정값까지 강선 직경을 감소시켜야 하겠으며, 강선의 표면조건을 조절하여 강선 간 마찰력을 높여야 할 것이다.

The prestressing steel wire, which is applied a tension to reinforce the structure, is applied flexure simultaneously by the duct and the deviator. In order to evaluate the deflected tensile performance of the prestressing steel wire subjected to both tensile and flexural stresses, the numerical analysis for 600 cases with variables of wire diameters, mandrel diameters, and friction coefficient between mandrel and steel wire was performed. As the result of analysis, the larger the diameter of the steel wire was, the lower the deflected tensile performance was, and the effect decreased with the increase of the wire elongation. The effect of mandrel diameter and friction coefficient between mandrel and wire on the deflected tensile performance of the wire was very small. But the deflected tensile performance and the friction coefficient between mandrel and strand showed a relatively high correlation. Therefore, it is necessary to make enough large elongation to secure the deflected tensile performance. If there is a restriction on the elongation, it is necessary to reduce the diameter of the steel wire to an appropriate value, and to increase the friction between steel wires by adjusting the surface condition of the steel wire.

키워드

참고문헌

  1. ASTM (2017), ASTM A416 Standard specification for low-relaxation, seven-wire steel strand for prestressed concrete, ASTM International, West Conshohocken, PA.
  2. ISO (1991), ISO 6934-4 Steel for the prestressing of concrete - Part 4: Strand. International Organization for Standardization (ISO), Geneva, Switzerland .
  3. EN (2009), FprEN 10138-3 Prestressing steels - Part 3: Strand. European Committee for Standardization(CEN), Brussels, Belgium.
  4. KS (2018), KS D7002 Uncoated stress-relieved steel wires and strands for prestressed concrete. Korean Agency for Technology and Standard, Seoul, Korea.
  5. ISO (2010), ISO 15630-3 Steel for the reinforcement and prestressing of concrete - Test methods - Part 3: Prestressing steel. International Organization for Standardization (ISO), Geneva, Switzerland.
  6. PTI (2012), PTI DC45.1 Recommendations for stay-cable design, testing and installation. Post-Tensioning Institute (PTI), Phoenix.
  7. FIB (2005), fib Bulletin 30 Acceptance of stay cable systems using prestressing steels, International Federation for Structural Concrete fib, Lausanne, Switzerland.
  8. FIP (1996), FIP Commission 2 FIP recommendations - Deflected tensile test. Federation Internationale de la Precontrainte (FIP), London.
  9. Tadolini, S. C., Derycke, S., Bhagwat, A. (2016), Characterization of tensile and shear loading on indented PC-strand cable bolts, Int. J. Min. Sci. Technology, 26 (1), 89-95. https://doi.org/10.1016/j.ijmst.2015.11.015
  10. Oshima, K., Tanaka, S., Nakaue, S., Nishino, M., Matsubara,Y., Yamada, M. (2016), Highly durable ultra-high Strength prestressing strand system with large diameter, SEI Technical Review, 82, 89-95.
  11. Hayashi, Y., Nakano, M., Shirahama, S., Yoshihara, N. (2013), Characteristics of developed high-strength prestressing strand, Proceedings of Third International Conference on Sustainable Construction Materials and Technology, Kyoto, Japan.
  12. Tanaka, S., Nakaue, S., Oshima, K., Matsubara, Y., Fukuda, M., Aoki, K. (2017), Recent development of epoxy coated and filled prestressing strand and behavior upon a wire break, Proceedings of the 2017 fib Symposium - High tech concrete: Where technology and engineering meet, Springer International Publishing, Maastricht, 284-293.
  13. Kim, J.K. and Yang. J.M. (2018), Effect of design variables on deflected tensile performance of high-strength 7-wire steel strand for stay cable, Construction and Building Materials, 188, 40-48. https://doi.org/10.1016/j.conbuildmat.2018.08.106
  14. ABAQUS (2000), ABAQUS/CAE user's manual, Ver.6.12. Hibbitt, Karlsson and Sorenson, Inc., Pawtukeet, RI.
  15. Kim, J.K., Kim, J.S., Kwon, S.H. (2014), Mechanical properties of a new prestressing strand with ultimate strength of 2160MPa, KSCE J. Civ. Eng., 18(2), 607-615. https://doi.org/10.1007/s12205-014-0065-6