Fig. 1. Surface morphology of Rd electrodeposits at DC 10 mA/cm2 for (a) 10 min (b) 20 min.
Fig. 2. Surface morphology of Rd electrodeposits at different DC current densities: (a) 1 mA/cm2 (b) 2 mA/cm2 (c) 5 mA/cm2 (d) 10 mA/cm2.
Fig. 3. Galvanostatic test at different current densities.
Fig. 4. Potentiodynamic plot at rhodium solution.
Fig. 5. Surface morphology at different pulse durations and times. Current density was 2 mA/cm2 (a) PC 7:3 and 14 min, (b) PC 7:3 and 140 min, (c) PC 5:5 and 14 min, (d) PC 5:5 and 140 min.
Fig. 6. Residual stress of electrodeposits at different pulse conditions.
참고문헌
- F. Wang, R. Cheong, and X. Li, "MEMS Vertical Probe Cards with Ultra Densely Arrayed Metal Probes for Wafer-Level IC Testing", J. Microelectromech. Sys., 18(4), 933 (2009). https://doi.org/10.1109/JMEMS.2009.2021815
- B. H. Kim, H. C. Kim, S. D. Choi, K. Chun, J. B. Kim, and J. H. Kim, "A Robust MEMS Probe Card with Vertical Guide for a Fine Pitch Test", J. Micromech. Microeng., 17(7), 1350 (2007). https://doi.org/10.1088/0960-1317/17/7/018
- T. Itoh, K. Kataoka, and T. Suga, "Characteristics of Low Force Contact Process for MEMS Probe Cards", Sensors and Actuators A: Physical, 97, 462 (2002). https://doi.org/10.1016/S0924-4247(01)00822-6
- Y. Cho, T. Kuki, Y. Fukuta, H. Fujita, and B. Kim, "Fabrication of Sharp Knife-Edged Micro Probe Card Combined with Shadow Mask Deposition", Sensors and Actuators A: Physical, 114(2-3), 327 (2004). https://doi.org/10.1016/j.sna.2003.12.021
- B. H. Kim, and J. B. Kim, "Design and Fabrication of a Highly Manufacturable MEMS Probe Card for High Speed Testing", J. Micromech. Microeng., 18(7), 075031 (2008). https://doi.org/10.1088/0960-1317/18/7/075031
- H. C. Huang, S. T. Chung, S. J. Pan, W. T. Tsai, and C. S. Lin, "Microstructure Evolution and Hardening Mechanisms of Ni-P Electrodeposits", Surf. Coat. Tech., 205(7), 2097 (2007). https://doi.org/10.1016/j.surfcoat.2010.08.115
- T. Itoh, S. Kawamura, K. Kataoka, and T. Suga, "Electroplated Ni Microcantilever Probe with Electrostatic Actuation", Sensors and Actuators A: Physical, 123, 490 (2005). https://doi.org/10.1016/j.sna.2005.03.023
- N. G. Kim, and Y. B. Sun, "Effect of Electroplating Parameters on Conductivity and Hardness of Ni-P Alloy", J. Microelectron. Packag. Soc., 24(3), 77 (2017). https://doi.org/10.6117/kmeps.2017.24.3.077
- B. P. Daly, and F. J. Barry, "Electrochemical Nickel-Phosphorus Alloy Formation", Inter. Mater. Rev., 48(5), 326 (2013). https://doi.org/10.1179/095066003225008482
- A. M. Pillai, A. Rajendra, and A. K. Shirma, "Electroplated Nickel-Phosphorous Alloy Coating: an in-depth Study of Its Preparation, Properties, and Structural Transitions", J. Coat. Tech. Resear., 9(6), 785 (2012). https://doi.org/10.1007/s11998-012-9411-0
- K. Y. Lee, H. J. Won, S. W. Jun, T. S. Oh, J. Y. Byun, and T. S. Oh, "Electrical Resistivity and Solder Reaction Characteristics of Ni Films Fabricated by Electroplating", J. Microelectron. Packag. Soc., 12(3), 253 (2005).
- Y. Li, H. Jiang, D. Wang, and H. Ge, "Effects of Saccharin and Cobalt Concentration in Electrolytic Solution on Micro Hardness of Nanocrystalline Ni-Co Alloys", Surf. Coat. Tech., 202(20), 4952 (2008). https://doi.org/10.1016/j.surfcoat.2008.04.093
- L. Wang, Y. Gao, Q. Xue, H. Liy, and T. Xu, "Microstructure and Tribological Properties of Electrodeposited Ni-Co Alloy Deposits", Appl. Surf. Sci., 242(3-4), 326 (2005). https://doi.org/10.1016/j.apsusc.2004.08.033
- M. Zamani, A. Amadeh, and S. M. Laribaghal, "Effect of Co Content on Electrodeposition Mechanism and Mechanical Properties of Electrodeposited Ni-Co Alloy", Transactions of Nonferrous Metals Society of China, 26(2), 484 (2016). https://doi.org/10.1016/S1003-6326(16)64136-5
- R. Orinakova, A. Turonova, D. Kladekova, M. Galova, and R. M. Smith, "Recent Developments in the Electrodeposition of Nickel and Some Nickel-Based Alloys", J. Appl. Electrochem., 36(9), 957 (2005). https://doi.org/10.1007/s10800-006-9162-7
- S. H. Hassani, K. Raeissi, and M. A. Golozar, "Effects of Saccharin on the Electrodepostition of Ni-Co Nanocrystalline Coatings", J. Appl. Electrochem., 38(5), 689 (2008). https://doi.org/10.1007/s10800-008-9488-4
- Y. Li, H. Jiang, W. Haung, and H. Tian, "Effects of Peak Current Density on the Mechanical Properties of Nanocrystalline Ni-Co Alloys Produced by Pulse Electrodeposition", Appl. Surf. Sci., 254(21), 6865 (2008) https://doi.org/10.1016/j.apsusc.2008.04.087
- D. Pletcher, and R. Urbina, "Electrodeposition of Rodium Part 1. Chloride Solutions", J. Electroanal. Chem., 421(1-2), 137 (1997). https://doi.org/10.1016/S0022-0728(96)04844-9
- D. Pletcher, and R. Urbina, "Electrodeposition of Rhodium Part 2. Sulfate Solutions", J. Electroanal. Chem., 421(1-2), 145 (1997). https://doi.org/10.1016/S0022-0728(96)04845-0
- M. Arbib, B. Zhang, V. Lazarov, D. Stoychev, A. Milchev, and C. Buess-Herman, "Electrochemical Nucleation and Growth of Rhodium on Gold Substrates", J. Electroanal. Chem., 510 (1-2), 67 (2001). https://doi.org/10.1016/S0022-0728(01)00545-9
- R. T. S. Oliveira, M. C. Santos, L. O. S. Bulhoes, and E. C. Pereira, "Rh Electrodeposition on Pt in Acidic Medium: a Study Using Cyclic Voltammetry and an Electrochemcial Quartz Crystal Microbalance", J. Electroanal. Chem., 569(2), 233 (2004). https://doi.org/10.1016/j.jelechem.2004.03.006
- A. V. Belyaev, M. A. Fedotov, and S. N. Shagabutdinova, "State of Rhodium(III) in Sulfuric Acid Solutions", Russ. J. Corrod. Chem., 33(2), 136 (2007). https://doi.org/10.1134/S107032840702011X
- S. Langerock, and L. Heerman, "Study of the Electrodeposition of Rhodium on Polycrystalline Gold Electrode by Quartz Microbalance and Voltammetric Techniques", J. Electrochem. Soc., 151(3), C155 (2004). https://doi.org/10.1149/1.1643071
- J. C. Puippe, and F. Leaman, "Theory and Practice of Pulse Plating", pp.1-11 AESFS, Orlando (1986).
피인용 문헌
- 나노 잔류응력 측정을 위한 비등방 압입자의 깊이별 응력환산계수 분석 vol.26, pp.4, 2019, https://doi.org/10.6117/kmeps.2019.26.4.095