Acknowledgement
Supported by : Dankook University
References
- Alonso, E.E., Gens, A. and Josa, A. (1990), "A constitutive model for partially saturated soils", Geotechnique, 40, 405-430. https://doi.org/10.1680/geot.1990.40.3.405
- Baker, R. and Frydman, S. (2009), "Unsaturated soil mechanics: Critical review of physical foundations", Eng. Geol., 106, 26-39. https://doi.org/10.1016/j.enggeo.2009.02.010.
- Bishop, A.W. (1959), "The principle of effective stress", Teknisk Ukeblad, 39, 859-863.
- Chae, J.G., Kim, B.S., Park, S.W. and Kato, S. (2010), "Effect of suction on unconfined strength in partly saturated soils", KSCE J. Civ. Eng., 14(3), 281-290. https://doi.org/10.1007/s12205-010-0281-7.
- Cunningham, M.R., Ridley, A.M., Dineen, K. and Burland, J.G. (2003), "The mechanical behaviour of a reconstituted unsaturated silty clay", Geotechnique, 53(2), 183-194. https://doi.org/10.1680/geot.2003.53.2.183.
- Donald, I.B. (1957), "Effective stresses in unsaturated non-cohesive soils with controlled negative pore pressure", M. Eng. Sc. Dissertation, University of Melbourne, Melbourne, Australia.
- Fannin, R.J., Eliadorani, A. and Wilkinson, J.M.T. (2005), "Shear strength of cohesionless soils at low stress", Geotechnique, 55(6), 467-478. https://doi.org/10.1680/geot.2005.55.6.467.
- Fourie, A.B., Rowe, D. and Blight, G.E. (1999), "The effect of infiltration on the stability of the slopes of a dry ash dump", Geotechnique, 49(1), 1-13. https://doi.org/10.1680/geot.1999.49.1.1.
- Fredlund, D.G. and Morgenstern, N.R. (1977), "Stress state variable for unsaturated soils", J. Geotech. Eng. Div., 103(GTS), 447-466. https://doi.org/10.1061/AJGEB6.0000423
- Fredlund, D.G., Morgenstern, N.R. and Widger, R.A. (1978), "The shear strength of unsaturated soils", Can. Geotech. J., 15(3), 313-321. https://doi.org/10.1139/t78-029.
- Fredlund, D.G. and Xing, A. (1994), "Equations for the soil water characteristic curve", Can. Geotech. J., 31(4), 521-532. https://doi.org/10.1139/t94-061.
- Gao, Y., Sun, D. A., Zhu, Z. and Xu, Y. (2019), "Hydromechanical behavior of unsaturated soil with different initial densities over a wide suction range", Acta Geotechnica, 14(2), 417-428. https://doi.org/10.1007/s11440-018-0662-5.
- Gardner, W.R. (1960), "Dynamic aspects of water availability to plants", Soil Sci., 89, 63-73. https://doi.org/10.1097/00010694-196002000-00001
- Gens, A., Sanchez, M. and Sheng, D. (2006), "On constitutive modelling of unsaturated soils", Acta Geotechnica, 1(3), 137. https://doi.org/10.1007/s11440-006-0013-9.
- Guan, Y. and Fredlund, D.G. (1997), "Use of tensile strength of water for the direct measurement of high soil suction", Can. Geotech. J., 34(4), 604-614. https://doi.org/10.1139/t97-014.
- Han, Z. and Vanapalli, S.K. (2016), "Stiffness and shear strength of unsaturated soils in relation to soil-water characteristic curve", Geotechnique, 66(8), 627-647. http://dx.doi.org/10.1680/jgeot.15.P.104.
- Hillel, D. (1971), Soil and Water, Academic Press, New York, U.S.A.
- Karube, D. and Kato, S. (1994), "An ideal unsaturated soil and the Bishop's soil", Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering, New Delhi, India, January.
- Karube, D., Kato, S., Hamada, K. and Honda, M. (1996), "The relationship between the mechanical behavior and the state of pore-water in unsaturated soil", Geotech. Eng. J. JSCE, 535(III-34), 83-92 (in Japanese with English abstract).
- Karube, D. and Kawai, K. (2001), "The role of pore water in the mechanical behavior of unsaturated soils", Geotech. Geol. Eng., 19(3-4), 211-241. https://doi.org/10.1023/A:1013188200053.
-
Khalili, N. and Khabbaz, M.H. (1998), "A unique relationship for
${\mathcal{X}}$ for the determination of the shear strength of unsaturated soils", Geotechnique, 48(5), 681-687. https://doi.org/10.1680/geot.1998.48.5.681 - Kirkham, M.B. (2014), Principles of Soil and Plant Water Relations, Academic Press.
- Kim, B.S., Park, S.W., Takeshita, Y. and Kato, S. (2016), "Effect of suction stress on the critical state of compacted silty soils under low confining pressure", Int. J. Geomech., 16(6), D4016010-1-11. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000665
- Kim, B.S., Shibuya, S., Park, S.W. and Kato, S. (2010), "Application of suction stress for estimating unsaturated shear strength of soils using direct shear testing under low confining pressure", Can. Geotech. J., 47(9), 955-970. https://doi.org/10.1139/T10-007.
- Kim, B.S., Shibuya, S., Park, S.W. and Kato, S. (2013), "Suction stress and its application on unsaturated direct shear test under constant volume condition", Eng. Geol., 155, 10-18. https://doi.org/10.1016/j.enggeo.2012.12.020.
- Kohgo, Y., Nakano, M. and Miyazaki, T. (1993), "Theoretical aspects of constitutive modeling for unsaturated soils", Soils Found., 33(4), 49-63. https://doi.org/10.3208/sandf1972.33.4_49.
- Li, L. and Zhang, X. (2015), "Modified unconfined compression testing system to characterize stress-strain behavior of unsaturated soils at low confining stresses", Transport. Res. Rec. J. Transport. Res. Board, 2510, 54-64. https://doi.org/10.3141%2F2510-07. https://doi.org/10.3141/2510-07
- Lin, H.D., Wang, C.C. and Wang, X.H. (2018), "A simplified method to estimate the total cohesion of unsaturated soil using an UC test", Geomech. Eng., 16(6), 599-608. https://doi.org/10.12989/gae.2018.16.6.599.
- Meyer, P.D. and Gee, G.W. (1999), "Flux-based estimation of field capacity", J. Geotech. Geoenviron. Eng., 125(7), 595-599. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:7(595)
- Mitachi, T. and Kudo, Y. (1996), "Method for predicting in-situ undrained strength of clays based on the suction value and unconfined compressive strength", Geotech. Eng. J. JSCE, 541(III-35), 147-158 (in Japanese with English abstract).
- Ng, C.W.W. and Shi, Q. (1998), "A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage", Comput. Geotech., 22(1), 1-28. https://doi.org/10.1016/S0266-352X(97)00036-0.
- Nishimura, T. (2006), "Drained shear test for unsaturated soil with different axial strain rate", Proc. Geo-Kanto, Kanto Branch Jap. Geotech. Soc., 240-241 (in Japanese).
- Oh, W.T. and Vanapalli, S. (2018), "Undrained shear strength of unsaturated soils under zero or low confining pressures in the vadose zone", Vadose Zone J., 17, 180024. https://doi.org/10.2136/vzj2018.01.0024
- Rahardjo, H., Lim, T.T., Chang, M.F. and Fredlund, D.G. (1995), "Shear-strength characteristics of a residual soil", Can. Geotech. J., 32(1), 60-77. https://doi.org/10.1139/t95-005.
- Ridley, A.M. (1995), "Strength-suction-moisture content relationships for kaolin under normal atmospheric conditions", Proceedings of the 1st International Conference on Unsaturated Soils, Paris, France, September.
- Ridley, A.M. and Burland, J.B. (1993), "A new instrument for the measurement of soil moisture suction", Geotechnique, 43(2), 321-324. https://doi.org/10.1680/geot.1993.43.2.321
- Ridley, A.M. and Burland, J.B. (1999), "Use of tensile strength of water for the direct measurement of high soil suction", Can. Geotech. J., 36(1), 178-180. https://doi.org/10.1139/t98-080.
- Sheng, D., Gens, A., Fredlund, D.G. and Sloan, S.W. (2008), "Unsaturated soils: From constitutive modelling to numerical algorithms", Comput. Geotech., 35(6), 810-824. https://doi.org/10.1016/j.compgeo.2008.08.011.
- Shogaki, T. (1995), "Effective stress behavior of clays in unconfined compression tests", Soils Found., 35(1), 169-171.
- Sujatha, E.R., Geetha, A.R., Jananee, R. and Karunya, S.R. (2018), "Strength and mechanical behaviour of coir reinforced lime stabilized soil", Geomech. Eng., 16(6), 627-634. https://doi.org/10.12989/gae.2018.16.6.627.
- Sun, D., Sheng, D., Xiang, L. and Sloan, S.W. (2008), "Elastoplastic prediction of hydro-mechanical behaviour of unsaturated soils under undrained conditions", Comput. Geotech., 35(6), 845-852. https://doi.org/10.1016/j.compgeo.2008.08.002.
- Sweeney, D.J. (1982), "Some in-situ soil suction measurements in Hong Kong's residual soil slopes", Proceedings of the 7th Southeast Asia Geotechnical Conference, Hong Kong, China, November.
- Take, W.A. and Bolton, M.D. (2003), "Tensiometer saturation and the reliable measurement of matric suction", Geotechnique, 53(2), 159-172. https://doi.org/10.1680/geot.2003.53.2.159
- Tatsuoka, F., Goto, S. and Sakamoto, M. (1986), "Effects of some factors on strength and deformation characteristics of sand at low pressures", Soils Found., 26(1), 105-114. https://doi.org/10.3208/sandf1972.26.105.
- Tiranti, D., Nicolo, G. and Gaeta, A.R. (2019), "Shallow landslides predisposing and triggering factors in developing a regional early warning system", Landslides, 16(2), 235-251. https://doi.org/10.1007/s10346-018-1096-8.
- Vanapalli, S.K. (2009), "Shear strength of unsaturated soils and its applications in geotechnical engineering practice", Proceedings of the 4th Asia-Pacific Conference on Unsaturated Soils, Newcastle, Australia, November.
- Vanapalli, S.K., Fredlund, D.G., Pufahl, M.D. and Clifton, A.W. (1996), "Model for prediction of shear strength with respect to soil suction", Can. Geotech. J., 33(3), 379-392. https://doi.org/10.1139/t96-060.
- Vanapalli, S.K., Sillers, W.S. and Fredlund, M.D. (1998), "The meaning and relevance of residual state to unsaturated soils", Proceedings of the 51st Canadian Geotechnical Conference, Edmonton, Canada, October.
- Van Genuchten, M.T. (1980), "A closed-form equation for prediction the hydraulic conductivity of unsaturated soils", Soil Sci. Soc. Amer. J., 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
- Xu, Y. and Sun, D. (2002), "A fractal model for soil pores and its application to determination of water permeability", Physica A Stat. Mech. Appl., 316(1-4), 56-64. https://doi.org/10.1016/S0378-4371(02)01331-6.
- Zhou, W.H., Xu, X. and Garg, A. (2016), "Measurement of unsaturated shear strength parameters of silty sand and its correlation with unconfined compressive strength", Measurement, 93, 351-358. https://doi.org/10.1016/j.measurement.2016.07.049.
Cited by
- Assessment of Water Retention Test by Continuous Pressurization Method vol.44, pp.2, 2019, https://doi.org/10.1520/gtj20190410
- On the effect of void ratio and particle breakage on saturated hydraulic conductivity of tailing materials vol.25, pp.2, 2019, https://doi.org/10.12989/gae.2021.25.2.159