DOI QR코드

DOI QR Code

A Study on Next Generation HTTP-based Adaptive Streaming Transmission Protocol for Realistic Media

실감미디어 전송을 위한 차세대 HTTP 기반 적응적 스트리밍 전송 프로토콜 연구

  • Song, Minjeong (Dept. of Information Technology & Media Engineering Graduate School of Nano IT Design Fusion Seoul National University of Science and Technology) ;
  • Yoo, Seong-geun (Dept. of Information Technology & Media Engineering Graduate School of Nano IT Design Fusion Seoul National University of Science and Technology) ;
  • Park, Sang-il (Dept. of Information Technology & Media Engineering Graduate School of Nano IT Design Fusion Seoul National University of Science and Technology)
  • 송민정 (서울과학기술대학교 나노IT디자인융합대학원 정보통신미디어공학전공) ;
  • 유성근 (서울과학기술대학교 나노IT디자인융합대학원 정보통신미디어공학전공) ;
  • 박상일 (서울과학기술대학교 나노IT디자인융합대학원 정보통신미디어공학전공)
  • Received : 2019.01.16
  • Accepted : 2019.06.25
  • Published : 2019.07.30

Abstract

Various streaming technologies are being studied to guarantee the QoE of viewers due to the development of realistic media. HTTP adaptive streaming is a typical example, and it is based on HTTP / 1.1 and TCP. These protocols have become one of the causes of delaying the image delay and increasing the waiting time of web pages. Therefore, in this paper, we propose a QUIC-DASH system applying the UDP-based transmission protocols QUIC and HTTP / 2 to the MPEG-DASH system after analyzing various transmission protocols and development process of HTTP. Through experiments, the QUIC-DASH system confirmed the possibility of providing optimal performance in terms of transmission speed of LTE environment than existing system. We also suggest various future studies for better performance.

실감 미디어의 발전에 의해 시청자의 QoE를 보장하기 위해 다양한 스트리밍 기술에 대한 연구가 진행되고 있다. HTTP 적응적 스트리밍은 그 대표적인 예이며 HTTP/1.1과 TCP 기반으로 이루어져 있다. 해당 프로토콜들은 웹 페이지 대기 시간을 증가시키고 영상의 지연을 불어일으키는 원인의 하나로 대두되고 있다. 따라서 본 논문에서는 다양한 전송 프로토콜과 HTTP의 발전과정에 대해 분석한 후 UDP 기반의 전송프로토콜인 QUIC과 HTTP/2를 MPEG-DASH 시스템에 적용한 QUIC-DASH 시스템을 제안한다. 실험을 통해 해당 QUIC-DASH 시스템은 LTE 환경의 전송 속도 측면에서 기존의 시스템보다 최적의 성능 제공 가능성을 확인하였다. 또한, 더 나은 성능을 위해 다양한 차후 연구에 대해 제안한다.

Keywords

BSGHC3_2019_v24n4_602_f0001.png 이미지

그림 1 . HTTP/2 및 QUIC의 요청-응답 경로 Fig. 1. Request-response path for HTTP / 2 and QUIC

BSGHC3_2019_v24n4_602_f0002.png 이미지

그림 2. TCP, TCP+TLS, QUIC의 연결 설정 과정 Fig. 2. TCP, TCP + TLS, QUIC connection establishment process

BSGHC3_2019_v24n4_602_f0003.png 이미지

그림 3. HTTP/2 및 HTTP/3의 프로토콜 스택 Fig. 3. HTTP/2 and HTTP/3 protocol stacks

BSGHC3_2019_v24n4_602_f0004.png 이미지

그림 4. QUIC-DASH 시스템 구성도 Fig. 4. QUIC-DASH system configuration diagram

BSGHC3_2019_v24n4_602_f0005.png 이미지

그림 5. 실험을 위한 전체 구성도 Fig. 5. Configuration diagram of experiments

BSGHC3_2019_v24n4_602_f0006.png 이미지

그림 6. HTTP/1.1+TCP 실험 결과 (좌), HTTP/2+QUIC 실험 결과(우) Fig. 6. HTTP / 1.1 + TCP experiment result (left), HTTP / 2 + QUIC experiment result (right)

BSGHC3_2019_v24n4_602_f0007.png 이미지

그림 7. 대역폭 제한을 걸지 않은 HTTP/1.1 서버의 DASH 세그먼트 I/O 그래프 Fig 7. DASH segment I/O graph of HTTP / 1.1 server without bandwidth limit

BSGHC3_2019_v24n4_602_f0008.png 이미지

그림 8. 대역폭 제한을 건(3,200Kbps) HTTP/1.1 서버의 DASH 세그먼트 I/O 그래프 Fig. 8. A DASH segment I/O graph of HTTP/1.1 server with bandwidth limit(3,200Kbps)

BSGHC3_2019_v24n4_602_f0009.png 이미지

그림 9. 대역폭이 급격히 하락한 지점의 I/O그래프 Fig. 9. I/O graph at the point where the bandwidth has fallen sharply

BSGHC3_2019_v24n4_602_f0010.png 이미지

그림 10. 대역폭이 급격히 하락한 지점의 패킷 메시지 Fig. 10. Packet messages at the point where the bandwidth has fallen sharply

BSGHC3_2019_v24n4_602_f0011.png 이미지

그림 11. 대역폭 제한을 건(3,200Kbps) gQUIC 서버의 DASH 세그먼트 I/O 그래프 Fig. 11. A DASH segment I/O graph of gQUIC server without bandwidth limit

References

  1. Biswal, Prasenjeet, and Omprakash Gnawali. "Does quic make the web faster?." Proceeding of 2016 IEEE Global Communications Conference (GLOBECOM). Washington, DC USA, pp. 1-6, 2016, https://doi.org/10.1109/GLOCOM.2016.7841749
  2. Google Wants To Speed Up The Web With Its QUIC Protocol, https://techcrunch.com/2015/04/18/google-wants-to-speed-up-the-web-with-its-quic-protocol/ (accessed Nov 22, 2015)
  3. Why Fastly loves QUIC and HTTP/3, https://www.fastly.com/blog/why-fastly-loves-quic-http3 (accessed Mar 21, 2019)
  4. HTTP/2, https://hpbn.co/http2/ (accessed Jul 10, 2018)
  5. Stephen Ludin, Javier Garza, Learning HTTP/2, (Translated by Jaejoon Gang), O'Reilly Media, USA, pp. 36-131, 2018
  6. Yunho Kim, Heekwang Kim and Kwangsue Chung, 2018, "Video Quality Maintenance Scheme for Improve QoE of HTTP Adaptive Streaming Service," Journal of KIISE, Vol. 45, No. 2, pp. 187-194, February 2018, https://doi.org/10.5626/JOK.2018.45.2.187
  7. M. Bishop, Hypertext Transfer Protocol Version 3 (HTTP/3), https://quicwg.org/base-drafts/draft-ietf-quic-http.html (accessed Jan, 2019)
  8. Dooyeol Yun and Kwangsue Chung, 2016, "Segment Scheduling Scheme to Support Seamless DASH-based Live Streaming Service," KIISE Transactions on Computing Practices, Vol. 22, No. 7, pp. 310-314, July 2016, https://doi.org/10.5626/KTCP.2016.22.7.310
  9. Behrouz A. Forouzan, TCP/IP PROTOCOL Suite, 4TH EDITION, (Translated by ByungChul Kim and five others), USA, pp.435-521, 2009
  10. User datagram protocol, https://tools.ietf.org/html/rfc768, (accessed Aug.28, 1980)
  11. Hypertext Transfer Protocol (HTTP) over QUIC draft-ietf-quic-http-04, https://tools.ietf.org/html/draft-ietf-quic-http-04, (accessed Jun. 13, 2017)
  12. HTTP/3 explained, https://legacy.gitbook.com/book/ bagder/http3-explained/details, (accessed Jan, 2019)
  13. Minjeong Song, Sunggeun Yoo and Sangil Park, "A Study on Transmission Technology Trend of Web Based Realistic Media (VR / AR) Platform", The Journal of The Korean Institute of Communication Sciences, Vol. 35, No. 9, pp. 38-45, August 2018, http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07544687
  14. MPEG-DASH with Server Push and WebSockets, https://mpeg.chiariglione.org/standards/mpeg-dash/dash-server-push-and-websockets, (accessed Oct, 2017)
  15. Yungyoun Kim and Kwangsue Chung, "A Video Quality Control Scheme Based on Content Characteristics for Improving QoE in DASH Environments," Journal of KIISE, Vol. 42, No. 8, pp. 1039-1048, Aug 2015, https://doi.org/10.5626/JOK.2015.42.8.1039
  16. Cisco Predicts More IP Traffic in the Next Five Years Than in the History of the Internet, https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1955935, (accessed Nov 27, 2018)