DOI QR코드

DOI QR Code

Five Newly Collected Turnip Mosaic Virus (TuMV) Isolates from Jeju Island, Korea are Closely Related to Previously Reported Korean TuMV Isolates but Show Distinctive Symptom Development

  • Hu, Wen-Xing (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Byoung-Jo (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kwak, Younghwan (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Seo, Eun-Young (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Jung-Kyu (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Han, Jae-Yeong (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Ik-Hyun (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Lim, Yong Pyo (Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Cho, In-Sook (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Domier, Leslie L (Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service) ;
  • Hammond, John (Floral and Nursery Plants Research Unit, United States National Arboretum, United States Department of Agriculture-Agricultural Research Service) ;
  • Lim, Hyoun-Sub (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
  • Received : 2018.11.01
  • Accepted : 2019.05.21
  • Published : 2019.08.01

Abstract

For several years, temperatures in the Korean peninsula have gradually increased due to climate change, resulting in a changing environment for growth of crops and vegetables. An associated consequence is that emerging species of insect vector have caused increased viral transmission. In Jeju Island, Korea, occurrences of viral disease have increased. Here, we report characterization of five newly collected turnip mosaic virus (TuMV) isolates named KBJ1, KBJ2, KBJ3, KBJ4 and KBJ5 from a survey on Jeju Island in 2017. Full-length cDNAs of each isolate were cloned into the pJY vector downstream of cauliflower mosaic virus 35S and bacteriophage T7 RNA polymerase promoters. Their fulllength sequences share 98.9-99.9% nucleotide sequence identity and were most closely related to previously reported Korean TuMV isolates. All isolates belonged to the BR group and infected both Chinese cabbage and radish. Four isolates induced very mild symptoms in Nicotiana benthamiana but KBJ5 induced a hypersensitive response. Symptom differences may result from three amino acid differences uniquely present in KBJ5; Gly(382)Asp, Ile(891)Val, and Lys(2522)Glu in P1, P3, and NIb, respectively.

Keywords

E1PPBG_2019_v35n4_381_f0001.png 이미지

Fig. 1. Symptoms of the five isolates (KBJ1-KBJ5) inoculated to Nicotiana benthamiana, shown at 7 days post inoculation (dpi) and 21 dpi; and to radish (Raphanus sativus) cultivars Chunghua and Iljin at 14 dpi. Representative plants inoculated with each isolate are shown. TuMV infection of all radish plants was confirmed by RT-PCR.

E1PPBG_2019_v35n4_381_f0002.png 이미지

Fig. 2. Amino acid residues differing among isolates KBJ1-5. Isolate KBJ-5 is marked in red because it can induce systemic necrosis in Nicotiana benthamiana. Differing amino acid residues are shown in red or blue, with unique KBJ5 residues 382 (HC-Pro), 891 (P3) and 2522 (NIb) marked by a red box.

E1PPBG_2019_v35n4_381_f0003.png 이미지

Fig. 3. Phylogenetic tree constructed by the maximum-likelihood method with 1,000 bootstrap replicates, based on the complete genome sequences of 58 TuMV isolates including twenty other Korean isolates (Gong et al., 2019) and the five new isolates from Jeju (indicated by arrows to the right of the isolate/accession number/country label).

E1PPBG_2019_v35n4_381_f0004.png 이미지

Fig. 4. (A) Structure of the chimeras constructed between mild isolate KBJ4 and severe isolate KBJ5. Chimeras AAB and BBA were generated by exchange of a 5ʹ ApaI/SpeI fragment; to create chimeras ABB and ABA, mutagenic PCR was utilized to alter a single nt resulting in I891V in the ApaI/SpeI fragment. (B) Each chimeric construct was then used to infect Nicotiana benthamiana, and radish cultivars Chunghua and Iljin. Images of representative plants were captured at 24 days post inoculation (dpi) for N. benthamiana, and 14 dpi for radish.

References

  1. Adams, M. J., Zerbini, F. M., French, R., Rabenstein, F., Stenger, D. C. and Valkonen, J. P. T. 2011. Potyviridae. In: Virus taxonomy: Ninth report of the international committee on taxonomy of viruses, eds. by A. M. Q. King, M. J. Adams, E. B. Carstens and E. J. Lefkowitz, pp. 1069-1089. Elsevier Academic Press, San Diego, CA, USA.
  2. Chung, J. S., Han, J. Y., Kim, J. K., Ju, H. K., Gong, J. S., Seo, E. Y., Hammond, J. and Lim, H. S. 2015. Survey of viruses present in radish fields in 2014. Res. Plant Dis. 21:235-242 (in Korean). https://doi.org/10.5423/RPD.2015.21.3.235
  3. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. and Ball, L. A. 2005. Virus taxonomy: Eighth report of the international committee on taxonomy of viruses. Elsevier Academic Press, San Diego, CA, USA. 1162 pp.
  4. Gal-On, A. 2000. A point mutation in the FRNK motif of the potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology 90:467-473. https://doi.org/10.1094/PHYTO.2000.90.5.467
  5. Gong, J., Ju, H. K., Kim, I.-H., Seo, E.-Y., Cho, I.-S., Hu, W.-X., Han, J.-Y., Kim, J.-K., Choi, S. R., Lim, Y. P., Hammond, J. and Lim, H.-S. 2019. Sequence variations among seventeen new radish isolates of Turnip mosaic virus showing differential pathogenicity and infectivity in Nicotiana benthamiana, Brassica rapa, and Raphanus sativus. Phytopathology 109:904-912. https://doi.org/10.1094/PHYTO-12-17-0401-R
  6. Hall, B. G. 2013. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 30:1229-1235. https://doi.org/10.1093/molbev/mst012
  7. Hahm, Y. I. 1995. Recent occurrence of TuMV disease on radish and Chinese cabbage in alpine region, Kangwon province. Res. Plant Dis. 1:45-46 (in Korean).
  8. Hahm, Y. I., Kwon, M., Kim, J. S., Seo, H. Y. and Ahn, J. H. 1998. Surveys on disease occurrence in major horticultural crops in Kangwon alpine areas. Korean J. Plant Pathol. 14:668-675 (in Korean).
  9. Han, J. Y., Chung, J., Kim, J., Seo, E. Y., Kilcrease, J. P., Bauchan, G. R., Lim, S., Hammond, J. and Lim, H. S. 2016. Comparison of helper component-protease RNA silencing suppression activity, subcellular localization, and aggregation of three Korean isolates of Turnip mosaic virus. Virus Genes 52:592-596. https://doi.org/10.1007/s11262-016-1330-1
  10. Jenner, C. E., Tomimura, K., Ohshima, K., Hughes, S. L. and Walsh, J. A. 2002. Mutations in Turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology 300:50-59. https://doi.org/10.1006/viro.2002.1519
  11. Jenner, C. E., Wang, X., Tomimura, K., Ohshima, K., Ponz, F. and Walsh, J. A. 2003. The dual role of the potyvirus P3 protein of Turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol. Plant-Microbe Interact. 16:777-784. https://doi.org/10.1094/MPMI.2003.16.9.777
  12. Kim, J. S., Lee, S. H., Choi, H. S., Kim, M. K., Kwak, H. R., Kim, J. S., Nam, M., Cho, J. D., Cho, I. S. and Choi, G. S. 2012. 2007-2011 characteristics of plant virus infections on crop samples submitted from agricultural places. Res. Plant Dis. 18:277-289. https://doi.org/10.5423/RPD.2012.18.4.277
  13. Kim, I.-H., Ju, H.-K., Gong, J., Han, J.-Y., Seo, E.-Y., Cho, S.-W., Hu, W.-X., Choi, S. R., Lim, Y. P., Domier, L., Hammond, J. and Lim, H.-S. 2019. A Turnip mosaic virus determinant of systemic necrosis in Nicotiana benthamiana, and a novel resistance-breaking determinant in Chinese cabbage identified from chimeric infectious clones. Phytopathology doi:10.1094/PHYTO-08-18-0323-R. (in press).
  14. Lim, H. S., Bragg, J. N., Ganesan, U., Ruzin, S., Schichnes, D., Lee, M. Y., Vaira, A. M., Ryu, K. H., Hammond, J. and Jackson, A. O. 2009. Subcellular localization of the Barley stripe mosaic virus triple gene block proteins. J. Virol. 83:9432-9448. https://doi.org/10.1128/JVI.00739-09
  15. Li, M. J., Kim, J. K., Seo, E. Y., Hong, S. M., Hwang, E. I., Moon, J. K., Domier, L. L., Hammond, J., Youn, Y. N. and Lim, H. S. 2014. Sequence variability in the HC-Pro coding regions of Korean Soybean mosaic virus isolates is associated with differences in RNA silencing suppression. Arch. Virol. 159:1373-1383. https://doi.org/10.1007/s00705-013-1964-4
  16. Mckeown, A. W., Warland, J., Mcdonald, M. R. and Hutchinson, C. M. 2004. Cool season crop production trends: A possible signal for global warming. Acta Hortic. 638:241-248. https://doi.org/10.17660/actahortic.2004.638.31
  17. Nguyen, H. D., Tran, H. T. and Ohshima, K. 2013a. Genetic variation of the Turnip mosaic virus population of Vietnam:a case study of founder, regional and local influences. Virus Res. 171:138-149. https://doi.org/10.1016/j.virusres.2012.11.008
  18. Nguyen, H. D., Tomitaka, Y., Ho, S. Y. W., Duchêne, S., Vetten, H. J., Lesemann, D., Walsh, J. A., Gibbs, A. J. and Ohshima, K. 2013b. Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago. PLoS One 8:e55336. https://doi.org/10.1371/journal.pone.0055336
  19. Ohshima, K., Yamaguchi, Y., Hirota, R., Hamamoto, T., Tomimura, K., Tan, Z., Sano, T., Azuhata, F., Walsh, J. A., Fletcher, J., Chen, J., Gera, A. and Gibbs, A. 2002. Molecular evolution of Turnip mosaic virus: evidence of host adaptation, genetic recombination and geographical spread. J. Gen. Virol. 83:1511-1521. https://doi.org/10.1099/0022-1317-83-6-1511
  20. Oh, S., Moon, K. H., Song, E. Y., Son, I. C. and Koh, S. C. 2015. Photosynthesis of Chinese cabbage and radish in response to rising leaf temperature during spring. Hortic. Environ. Biotechnol. 56:159-166. https://doi.org/10.1007/s13580-015-0122-1
  21. Park, C. H, Ju, H. K., Han, J. Y., Park, J. S., Kim, I. H., Seo, E. Y., Kim, J. K., Hammond, J. and Lim, H. S. 2017. Complete nucleotide sequences and construction of full-length infectious cDNA clones of Cucumber green mottle mosaic virus (CGMMV) in a versatile newly developed binary vector including both 35S and T7 promoters. Virus Genes 53:286-299. https://doi.org/10.1007/s11262-016-1415-x
  22. Provvidenti, R. 1996. Turnip mosaic potyvirus. In: Viruses of plants, eds. by A. A. Brunt, K. Crabtree, M. J. Dallwitz, A. J. Gibbs and L. Watson, pp. 1340-1343. CAB International, Wallingford, UK.
  23. Redondo, E., Krause-Sakate, R., Yang, S. J., Lot, H., Le Gall, O. and Candresse, T. 2001. Lettuce mosaic virus pathogenicity determinants in susceptible and tolerant lettuce cultivars map to different regions of the viral genome. Mol. Plant-Microbe Interact. 14:804-810. https://doi.org/10.1094/MPMI.2001.14.6.804
  24. Saenz, P., Cervera, M. T., Dallot, S., Quiot, L., Quiot, J. B., Riechmann, J. L. and Garcia, J. A. 2000. Identification of a pathogenicity determinant of plum pox virus in the sequence encoding the C-terminal region of protein P3+6K(1). J. Gen. Virol. 81:557-566. https://doi.org/10.1099/0022-1317-81-3-557
  25. Saenz, P., Quiot, L., Quiot, J. B., Candresse, T. and Garcia, J. A. 2001. Pathogenicity determinants in the complex virus population of a Plum poxvirus isolate. Mol. Plant-Microbe Interact. 14:278-287. https://doi.org/10.1094/MPMI.2001.14.3.278
  26. Suehiro, N., Natsuaki, T., Watanabe, T. and Okuda, S. 2004. An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. J. Gen. Virol. 85:2087-2098. https://doi.org/10.1099/vir.0.79825-0
  27. Tomimura, K., Gibbs, A. J., Jenner, C. E., Walsh, J. A. and Ohshima, K. 2003. The phylogeny of Turnip mosaic virus; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent 'emergence' in East Asia. Mol. Ecol. 12:2099-2111. https://doi.org/10.1046/j.1365-294X.2003.01881.x
  28. Tomimura, K., Spak, J., Katis, N., Jenner, C. E., Walsh, J. A., Gibbs, A. J. and Ohshima, K. 2004. Comparisons of the genetic structure of populations of Turnip mosaic virus in west and east Eurasia. Virology 330:408-423. https://doi.org/10.1016/j.virol.2004.09.040
  29. Tomitaka, Y. and Ohshima, K. 2006. A phylogeographical study of the Turnip mosaic virus population in east Asia reveals an 'emergent' lineage in Japan. Mol. Ecol. 15:4437-4457. https://doi.org/10.1111/j.1365-294X.2006.03094.x
  30. Yasaka, R., Fukagawa, H., Ikematsu, M., Soda, H., Korkmaz, S., Golnaraghi, A., Katis, N., Ho, S. Y. W., Gibbs, A. J. and Ohshima, K. 2017. The timescale of emergence and spread of Turnip mosaic potyvirus. Sci. Rep. 7:4240. https://doi.org/10.1038/s41598-017-01934-7
  31. Ye, J., Gong, Y. and Fang, R. 2017. Research progress and perspective of tripartite interaction of virus-vector-plant in vector-borne viral diseases. Bull. Chin. Acad. Sci. 32:845-855 (in Chinese).